Advertisement

The Journal of Membrane Biology

, Volume 249, Issue 3, pp 339–347 | Cite as

Effects of Phospholipase A2 Inhibitors on Bilayer Lipid Membranes

  • Mikhail V. DubininEmail author
  • Maxim E. Astashev
  • Nikita V. Penkov
  • Sergey V. Gudkov
  • Igor A. Dyachenko
  • Victor N. Samartsev
  • Konstantin N. Belosludtsev
Article

Abstract

The work examines the effect of inhibitors of cytosolic Ca2+-dependent and Ca2+-independent phospholipases A2 on bilayer lipid membranes. It was established that trifluoroperazine (TFP) and, to a lesser extent, arachidonyl trifluoromethyl ketone (AACOCF3) and palmitoyl trifluoromethyl ketone (PACOCF3) were able to permeabilize artificial lipid membranes (BLM and liposomes). It was shown that AACOCF3 lowered the temperature of phase transition of DMPC liposomes, inducing disordering of the hydrophobic region of lipid bilayer. TFP disordered membranes both in the hydrophobic region and in the region of hydrophilic heads, this being accompanied by changes in the membrane permeability: appearance of a channel-like BLM activity and leakage of sulforhodamine B from liposomes. In contrast to AACOCF3 and TFP, PACOCF3 increased membrane orderliness in the hydrophobic region (heightened the temperature of phase transition of DMPC liposomes) and in the region of lipid heads. The effectiveness of AACOCF3 and PACOCF3 as inductors of BLM and liposome permeabilization was considerably lower comparatively to TFP. As revealed by dynamic light scattering, incorporation of TFP, AACOCF3 and PACOCF3 into the membrane of liposomes resulted in the increase of the average size of particles in the suspension, presumably due to their aggregation or fusion. The paper discusses possible mechanisms of the influence of phospholipase A2 inhibitors on bilayer lipid membranes.

Keywords

Phospholipase A2 Liposomes Membrane permeabilization Membrane fusion Lipid pores Phase transitions 

Abbreviations

PLA2

Phospholipase A2

AACOCF3

Arachidonyl trifluoromethyl ketone

PACOCF3

Palmitoyl trifluoromethyl ketone

TFP

Trifluoroperazine

BLM

Bilayer lipid membrane

LUV

Large unilamellar vesicles

DMPC

1,2-Dimiristoylphosphatidylcholine

SRB

Sulforhodamine B

DLS

Dynamic light scattering

GP

Generalized polarization

DSC

Differential scanning calorimetry

TX-100

Triton X-100

Notes

Acknowledgments

The work was supported by the grants from the Russian Foundation for Basic Research to K.N. Belosludtsev (15-34-50346, 15-04-03081-a) and to V.N. Samartsev (14-04-00688-a) by the Government of Russian Federation (Project No. 14.Z50.31.0028) and by the Ministry for Education and Science of Russian Federation to V.N. Samartsev (State Order no. 1365).

References

  1. Agafonov A, Gritsenko E, Belosludtsev K, Kovalev A, Gateau-Roesch O, Saris N-EL, Mironova GD (2003) A permeability transition in liposomes induced by the formation of Ca2+/palmitic acid complexes. Biochim Biophys Acta 1609:153–160CrossRefPubMedGoogle Scholar
  2. Agafonov AV, Gritsenko EN, Shlyapnikova EN, Kharakoz DP, Belosludtseva NV, Lezhnev EI, Saris Nils-Erik L, Mironova GD (2007) Ca2+-induced phase separation in the membrane of palmitate-containing liposomes and its possible relation to membrane permeabilization. J Membr Biol 215:57–68CrossRefPubMedGoogle Scholar
  3. Anel A, Richieri GV, Kleinfeld AM (1993) Membrane partition of fatty acids and inhibition of T cell function. Biochemistry 32:530–536CrossRefPubMedGoogle Scholar
  4. Antonov VF, Anosov AA, Norik VP, Smirnova EY (2005) Soft perforation of planar BLM from DPPC at the temperature of phase transition from the liquid crystalline to the gel state. Eur Biophys J 34:155–162CrossRefPubMedGoogle Scholar
  5. Astashev ME, Belosludtsev KN, Kharakoz DP (2014) Method for digital measurement of phase–frequency characteristics for a fixed length ultrasonic spectrometer. Acoust Phys 60:335–341CrossRefGoogle Scholar
  6. Bate C, Reid S, Williams A (2004) Phospholipase A2 inhibitors or platelet-activating factor antagonists prevent prion replication. J Biol Chem 279:36405–36411CrossRefPubMedGoogle Scholar
  7. Belosludtsev KN, Belosludtseva NV, Agafonov AV, Astashev ME, Kazakov AS, Saris N-EL, Mironova GD (2014) Ca2+-dependent permeabilization of mitochondria and liposomes by palmitic and oleic acids: a comparative study. Biochim Biophys Acta 1838:2600–2606CrossRefPubMedGoogle Scholar
  8. Belosludtsev KN, Belosludtseva NV, Agafonov AV, Penkov NV, Samartsev VN, Lemasters JJ, Mironova GD (2015) Effect of surface-potential modulators on the opening of lipid pores in liposomal and mitochondrial inner membranes induced by palmitate and calcium ions. Biochim Biophys Acta 1848:2200–2205CrossRefPubMedGoogle Scholar
  9. Broekemeier KM, Schmid PC, Schmid HH, Pfeiffer DR (1985) Effects of phospholipase A2 inhibitors on ruthenium red-induced Ca2+ release from mitochondria. J Biol Chem 260:105–113PubMedGoogle Scholar
  10. Broekemeier KM, Iben JR, LeVan EG, Crouser ED, Pfeiffer DR (2002) Pore formation and uncoupling initiate a Ca2+-independent degradation of mitochondrial phospholipids. Biochemistry 41:7771–7780CrossRefPubMedGoogle Scholar
  11. Dabbeni Sala F, Palatini P (1990) Mechanism of local anesthetic effect. Involvement of F0 in the inhibition of mitochondrial ATP synthase by phenothiazines. Biochim Biophys Acta 1015:248–252CrossRefPubMedGoogle Scholar
  12. Dennis EA, Cao J, Hsu YH, Magrioti V, Kokotos G (2011) Phospholipase A2 enzymes: physical structure, biological function, disease implication, chemical inhibition, and therapeutic intervention. Chem Rev 111:6130–6185CrossRefPubMedPubMedCentralGoogle Scholar
  13. Doualla Bell Kotto Maka F, Breuiller M, Leroy MJ, Josserand S, Ferre F (1990) Sensitivity of the human myometrial adenylate cyclase to calcium and calmodulin. Gynecol Obstet Invest 30:169–173CrossRefPubMedGoogle Scholar
  14. Ehringer W, Belcher D, Wassall SR, Stillwell W (1990) A comparison of the effects of linolenic (18:3 omega 3) and docosahexaenoic (22:6 omega 3) acids on phospholipid bilayers. Chem Phys Lipids 54:79–88CrossRefPubMedGoogle Scholar
  15. Font J, Marino A, Ravelingien N, Dehaye JP, Trueba M, Macarulla JM (1990) Calcium-activated, phospholipid-dependent protein kinase activity in calf platelets. Rev Esp Fisiol 46:325–330PubMedGoogle Scholar
  16. Hendrich AB, Wesolowska O, Michalak K (2001) Trifluoperazine induces domain formation in zwitterionic phosphatidylcholine but not in charged phosphatidylglycerol bilayers. Biochim Biophys Acta 1510:414–425CrossRefPubMedGoogle Scholar
  17. Hoyt KR, Sharma TA, Reynolds IJ (1997) Trifluoperazine and dibucaine-induced inhibition of glutamate-induced mitochondrial depolarization in rat cultured forebrain neurones. Br J Pharmacol 122:803–808CrossRefPubMedPubMedCentralGoogle Scholar
  18. Ichikawa M, Urayama M, Matsumoto G (1991) Anticalmodulin drugs block the sodium gating current of squid giant axons. J Membr Biol 120:211–222CrossRefPubMedGoogle Scholar
  19. Jan CR, Chou KJ, Lee KC, Wang JL, Tseng LL, Cheng JS, Chen WC (2000) Dual action of palmitoyl trifluoromethyl ketone (PACOCF3) on Ca2+ signaling: activation of extracellular Ca2+ influx and alteration of ATP- and bradykinin-induced Ca2+ responses in Madin Darby canine kidney cells. ArchToxicol 74:447–451Google Scholar
  20. Johnson JD, Wittenauer LA (1983) A fluorescent calmodulin that reports the binding of hydrophobic inhibitory ligands. Biochem J 211:473–479CrossRefPubMedPubMedCentralGoogle Scholar
  21. Kharakoz DP, Panchelyuga MS, Tiktopulo EI, Shlyapnikova EA (2007) Critical temperatures and a critical chain length in saturated diacylphosphatidylcholines: calorimetric, ultrasonic and Monte Carlo simulation study of chain-melting/ordering in aqueous lipid dispersions. Chem Phys Lipids 150:217–228CrossRefPubMedGoogle Scholar
  22. Laver DR, Cherry CA, Walker NA (1997) The actions of calmodulin antagonists W-7 and TFP and of calcium on the gating kinetics of the calcium-activated large conductance potassium channel of the chara protoplasmic drop: a substate-sensitive analysis. J Membr Biol 155:263–274CrossRefPubMedGoogle Scholar
  23. Leis HJ, Windischhofer W (2008) Inhibition of cyclooxygenases 1 and 2 by the phospholipase-blocker, arachidonyl trifluoromethyl ketone. Br J Pharmacol 155:731–737CrossRefPubMedPubMedCentralGoogle Scholar
  24. Li Q, Cathcart MK (1997) Selective inhibition of cytosolic phospholipase A2 in activated human monocytes. Regulation of superoxide anion production and low density lipoprotein oxidation. J Biol Chem 272:2404–2411CrossRefPubMedGoogle Scholar
  25. Mabrey S, Sturtevant JM (1977) Incorporation of saturated fatty acids into phosphatidylcholine bilayers. Biochim Biophys Acta 486:444–450CrossRefPubMedGoogle Scholar
  26. Malheiros SV, de Paula E, Meirelles NC (1998) Contribution of trifuoperazine/lipid ratio and drug ionization to hemolysis. Biochim Biophys Acta 1373:332–340CrossRefPubMedGoogle Scholar
  27. Marsh D (2012) Thermodynamics of phospholipid self-assembly. Biophys J 102:1079–1087CrossRefPubMedPubMedCentralGoogle Scholar
  28. Mironova GD, Baumann M, Kolomytkin O, Krasichkova Z, Berdimuratov A, Sirota T, Virtanen I, Saris NE (1994) Purification of the channel component of the mitochondrial calcium uniporter and its reconstitution into planar lipid bilayers. J Bioenerg Biomembr 26:231–238CrossRefPubMedGoogle Scholar
  29. Mironova GD, Belosludtsev KN, Surin AM, Trudovishnikov AS, Belosludtseva NV, Pinelis VG, Krasilnikova IA, Khodorov BI (2011) Mitochondrial lipid pore in the mechanism of glutamate-induced calcium deregulation of brain neurons. Biochem (Moscow) Suppl Ser A Membr Cell 6:45–55CrossRefGoogle Scholar
  30. Mironova GD, Saris N-EL, Belosludtseva NV, Agafonov AV, Elantsev AB, Belosludtsev KN (2015) Involvement of palmitate/Ca2+(Sr2+)-induced pores in the cycling of ions across the mitochondrial membrane. Biochim Biophys Acta 1848:488–495CrossRefPubMedGoogle Scholar
  31. Murakami M, Taketomi Y, Miki Y, Sato H, Hirabayashi T, Yamamoto K (2011) Recent progress in phospholipase A2 research: from cells to animals to humans. Prog Lipid Res 50:152–192CrossRefPubMedGoogle Scholar
  32. Muranushi N, Takagi N, Muranishi S, Sezaki H (1981) Effect of fatty acids and monoglycerides on permeability of lipid bilayer. Chem Phys Lipids 28:269–279CrossRefPubMedGoogle Scholar
  33. Parasassi T, Gratton E (1995) Membrane lipid domains and dynamics as detected by laurdan fluorescence. J Fluorescence 5:59–69CrossRefGoogle Scholar
  34. Parasassi T, De Stasio G, dUbaldo A, Gratton E (1990) Phase fluctuation in phospholipid membranes revealed by laurdan fluorescence. Biophys J 57:1179–1186CrossRefPubMedPubMedCentralGoogle Scholar
  35. Riendeau D, Guay J, Weech PK, Laliberte F, Yergey J, Li C, Desmarais S, Perrier H, Liu S, Nicoll-Griffith D (1994) Arachidonyl trifluoromethyl ketone, a potent inhibitor of 85-kDa phospholipase A2, blocks production of arachidonate and 12-hydroxyeicosatetraenoic acid by calcium ionophore-challenged platelets. J Biol Chem 269:15619–15624PubMedGoogle Scholar
  36. Schaeffer EL, Bassi F Jr, Gattaz WF (2005) Inhibition of phospholipase A2 activity reduces membrane fluidity in rat hippocampus. J Neural Transm 112:641–647CrossRefPubMedGoogle Scholar
  37. Street IP, Lin HK, Laliberte F, Ghomashchi F, Wang Z, Perrier H, Tremblay NM, Huang Z, Weech PK, Gelb MH (1993) Slow- and tight-binding inhibitors of the 85-kDa human phospholipase A2. Biochemistry 32:5935–5940CrossRefPubMedGoogle Scholar
  38. Tripathi T, Abdi M, Alizadeh H (2013) Role of phospholipase A2 (PLA2) inhibitors in attenuating apoptosis of the corneal epithelial cells and mitigation of Acanthamoeba keratitis. Exp Eye Res 113:182–191CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Mikhail V. Dubinin
    • 1
    • 2
    Email author
  • Maxim E. Astashev
    • 2
    • 3
  • Nikita V. Penkov
    • 3
  • Sergey V. Gudkov
    • 2
    • 4
    • 5
  • Igor A. Dyachenko
    • 6
    • 7
  • Victor N. Samartsev
    • 1
  • Konstantin N. Belosludtsev
    • 1
    • 2
  1. 1.Mari State UniversityYoshkar-OlaRussia
  2. 2.Institute of Theoretical and Experimental Biophysics RASPushchinoRussia
  3. 3.Institute of Cell Biophysics RASPushchinoRussia
  4. 4.Prokhorov General Physics Institute RASMoscowRussia
  5. 5.Lobachevsky State University of Nizhny NovgorodNizhny NovgorodRussia
  6. 6.Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RASPushchinoRussia
  7. 7.Pushchino State Institute of Natural SciencesPushchinoRussia

Personalised recommendations