The Journal of Membrane Biology

, Volume 248, Issue 6, pp 1107–1119 | Cite as

Down-Regulation of Excitatory Amino Acid Transporters EAAT1 and EAAT2 by the Kinases SPAK and OSR1

  • Abeer Abousaab
  • Jamshed Warsi
  • Bernat Elvira
  • Ioana Alesutan
  • Zohreh Hoseinzadeh
  • Florian Lang


SPAK (SPS1-related proline/alanine-rich kinase) and OSR1 (oxidative stress-responsive kinase 1) are cell volume-sensitive kinases regulated by WNK (with-no-K[Lys]) kinases. SPAK/OSR1 regulate several channels and carriers. SPAK/OSR1 sensitive functions include neuronal excitability. Orchestration of neuronal excitation involves the excitatory glutamate transporters EAAT1 and EAAT2. Sensitivity of those carriers to SPAK/OSR1 has never been shown. The present study thus explored whether SPAK and/or OSR1 contribute to the regulation of EAAT1 and/or EAAT2. To this end, cRNA encoding EAAT1 or EAAT2 was injected into Xenopus oocytes without or with additional injection of cRNA encoding wild-type SPAK or wild-type OSR1, constitutively active T233ESPAK, WNK insensitive T233ASPAK, catalytically inactive D212ASPAK, constitutively active T185EOSR1, WNK insensitive T185AOSR1 or catalytically inactive D164AOSR1. The glutamate (2 mM)-induced inward current (I Glu) was taken as a measure of glutamate transport. As a result, I Glu was observed in EAAT1- and in EAAT2-expressing oocytes but not in water-injected oocytes, and was significantly decreased by coexpression of SPAK and OSR1. As shown for EAAT2, SPAK, and OSR1 decreased significantly the maximal transport rate but significantly enhanced the affinity of the carrier. The effect of wild-type SPAK/OSR1 on EAAT1 and EAAT2 was mimicked by T233ESPAK and T185EOSR1, but not by T233ASPAK, D212ASPAK, T185AOSR1, or D164AOSR1. Coexpression of either SPAK or OSR1 decreased the EAAT2 protein abundance in the cell membrane of EAAT2-expressing oocytes. In conclusion, SPAK and OSR1 are powerful negative regulators of the excitatory glutamate transporters EAAT1 and EAAT2.


Neuronal excitation Glutamate Oxidative stress-responsive kinase 1 SPS1-related proline/alanine-rich kinase WNK 



The authors acknowledge the meticulous preparation of the manuscript by Tanja Loch and technical support by Elfriede Faber. This study was supported by the Deutsche Forschungsgemeinschaft, GRK 1302, SFB 773 B4/A1, La 315/13-3.

Author Contributions

Conception and design of research: FL. Performed experiments AA, BE, IA. Analyzed data: AA, JW, BE, IA, ZH. Interpreted results of experiments: AA, JW, BE, ZH, FL. Prepared figures: AA, JW, BE, ZH, Drafted manuscript: FL. Edited and wrote manuscript: FL. Approved final version: AA, JW, BE, ZH, FL.

Compliance with Ethical Standards

Conflict of Interests

The authors of this manuscript state that they do not have any conflict of interests and nothing to disclose.


  1. Achard JM, Disse-Nicodeme S, Fiquet-Kempf B, Jeunemaitre X (2001) Phenotypic and genetic heterogeneity of familial hyperkalaemic hypertension (Gordon syndrome). Clin Exp Pharmacol Physiol 28:1048–1052PubMedCrossRefGoogle Scholar
  2. Alessi DR, Zhang J, Khanna A, Hochdorfer T, Shang Y, Kahle KT (2014) The WNK-SPAK/OSR1 pathway: master regulator of cation-chloride cotransporters. Sci Signal 7:re3PubMedCrossRefGoogle Scholar
  3. Almilaji A, Munoz C, Hosseinzadeh Z, Lang F (2013a) Upregulation of Na+, Cl(-)-coupled betaine/gamma-amino-butyric acid transporter BGT1 by Tau tubulin kinase 2. Cell Physiol Biochem 32:334–343PubMedCrossRefGoogle Scholar
  4. Almilaji A, Szteyn K, Fein E, Pakladok T, Munoz C, Elvira B, Towhid ST, Alesutan I, Shumilina E, Bock CT, Kandolf R, Lang F (2013b) Down-regulation of Na/K+ atpase activity by human parvovirus B19 capsid protein VP1. Cell Physiol Biochem 31:638–648PubMedCrossRefGoogle Scholar
  5. Almilaji A, Honisch S, Liu G, Elvira B, Ajay SS, Hosseinzadeh Z, Ahmed M, Munoz C, Sopjani M, Lang F (2014a) Regulation of the voltage gated K channel Kv1.3 by recombinant human klotho protein. Kidney Blood Press Res 39:609–622PubMedCrossRefGoogle Scholar
  6. Almilaji A, Sopjani M, Elvira B, Borras J, Dermaku-Sopjani M, Munoz C, Warsi J, Lang UE, Lang F (2014b) Upregulation of the creatine transporter Slc6A8 by Klotho. Kidney Blood Press Res 39:516–525PubMedCrossRefGoogle Scholar
  7. Amara SG, Fontana AC (2002) Excitatory amino acid transporters: keeping up with glutamate. Neurochem Int 41:313–318PubMedCrossRefGoogle Scholar
  8. Barnett NL, Pow DV (2000) Antisense knockdown of GLAST, a glial glutamate transporter, compromises retinal function. Invest Ophthalmol Vis Sci 41:585–591PubMedGoogle Scholar
  9. Beart PM, O’Shea RD (2007) Transporters for L-glutamate: an update on their molecular pharmacology and pathological involvement. Br J Pharmacol 150:5–17PubMedCentralPubMedCrossRefGoogle Scholar
  10. Ben-Ari Y, Khalilov I, Kahle KT, Cherubini E (2012) The GABA excitatory/inhibitory shift in brain maturation and neurological disorders. Neuroscientist 18:467–486PubMedCrossRefGoogle Scholar
  11. Berger UV, Hediger MA (1998) Comparative analysis of glutamate transporter expression in rat brain using differential double in situ hybridization. Anat Embryol (Berl) 198:13–30CrossRefGoogle Scholar
  12. Boehmer C, Henke G, Schniepp R, Palmada M, Rothstein JD, Broer S, Lang F (2003) Regulation of the glutamate transporter EAAT1 by the ubiquitin ligase Nedd4-2 and the serum and glucocorticoid-inducible kinase isoforms SGK1/3 and protein kinase B. J Neurochem 86:1181–1188PubMedCrossRefGoogle Scholar
  13. Boehmer C, Palmada M, Rajamanickam J, Schniepp R, Amara S, Lang F (2006) Post-translational regulation of EAAT2 function by co-expressed ubiquitin ligase Nedd4-2 is impacted by SGK kinases. J Neurochem 97:911–921PubMedCrossRefGoogle Scholar
  14. Boycott HE, Dallas M, Boyle JP, Pearson HA, Peers C (2007) Hypoxia suppresses astrocyte glutamate transport independently of amyloid formation. Biochem Biophys Res Commun 364:100–104PubMedCrossRefGoogle Scholar
  15. Capasso G, Cantone A, Evangelista C, Zacchia M, Trepiccione F, Acone D, Rizzo M (2005) Channels, carriers, and pumps in the pathogenesis of sodium-sensitive hypertension. Semin Nephrol 25:419–424PubMedCrossRefGoogle Scholar
  16. Castaneda-Bueno M, Gamba G (2010) SPAKling insight into blood pressure regulation. EMBO Mol Med 2:39–41PubMedCentralPubMedCrossRefGoogle Scholar
  17. Cholet N, Pellerin L, Magistretti PJ, Hamel E (2002) Similar perisynaptic glial localization for the Na+, K+-ATPase alpha 2 subunit and the glutamate transporters GLAST and GLT-1 in the rat somatosensory cortex. Cereb Cortex 12:515–525PubMedCrossRefGoogle Scholar
  18. Delpire E, Gagnon KB (2006) SPAK and OSR1, key kinases involved in the regulation of chloride transport. Acta Physiol (Oxf) 187:103–113CrossRefGoogle Scholar
  19. Delpire E, Gagnon KB (2008) SPAK and OSR1: STE20 kinases involved in the regulation of ion homoeostasis and volume control in mammalian cells. Biochem J 409:321–331PubMedCrossRefGoogle Scholar
  20. Dermaku-Sopjani M, Almilaji A, Pakladok T, Munoz C, Hosseinzadeh Z, Blecua M, Sopjani M, Lang F (2013) Down-regulation of the Na+-coupled phosphate transporter NaPi-IIa by AMP-activated protein kinase. Kidney Blood Press Res 37:547–556PubMedCrossRefGoogle Scholar
  21. Derouiche A, Rauen T (1995) Coincidence of L-glutamate/L-aspartate transporter (GLAST) and glutamine synthetase (GS) immunoreactions in retinal glia: evidence for coupling of GLAST and GS in transmitter clearance. J Neurosci Res 42:131–143PubMedCrossRefGoogle Scholar
  22. Desilva TM, Billiards SS, Borenstein NS, Trachtenberg FL, Volpe JJ, Kinney HC, Rosenberg PA (2008) Glutamate transporter EAAT2 expression is up-regulated in reactive astrocytes in human periventricular leukomalacia. J Comp Neurol 508:238–248PubMedCentralPubMedCrossRefGoogle Scholar
  23. Domercq M, Matute C (1999) Expression of glutamate transporters in the adult bovine corpus callosum. Brain Res Mol Brain Res 67:296–302PubMedCrossRefGoogle Scholar
  24. Domercq M, Sanchez-Gomez MV, Areso P, Matute C (1999) Expression of glutamate transporters in rat optic nerve oligodendrocytes. Eur J Neurosci 11:2226–2236PubMedCrossRefGoogle Scholar
  25. Elvira B, Munoz C, Borras J, Chen H, Warsi J, Ajay SS, Shumilina E, Lang F (2014) SPAK and OSR1 dependent down-regulation of murine renal outer medullary K channel ROMK1. Kidney Blood Press Res 39:353–360PubMedCrossRefGoogle Scholar
  26. Estrada Sanchez AM, Mejia-Toiber J, Massieu L (2008) Excitotoxic neuronal death and the pathogenesis of Huntington’s disease. Arch Med Res 39:265–276PubMedCrossRefGoogle Scholar
  27. Falin RA, Morrison R, Ham AJ, Strange K (2009) Identification of regulatory phosphorylation sites in a cell volume- and Ste20 kinase-dependent ClC anion channel. J Gen Physiol 133:29–42PubMedCentralPubMedCrossRefGoogle Scholar
  28. Falin RA, Miyazaki H, Strange K (2011) C. elegans STK39/SPAK ortholog-mediated inhibition of ClC anion channel activity is regulated by WNK-independent ERK kinase signaling. Am J Physiol Cell Physiol 300:C624–C635PubMedCentralPubMedCrossRefGoogle Scholar
  29. Fezai M, Elvira B, Borras J, Ben-Attia M, Hoseinzadeh Z, Lang F (2014) Negative regulation of the creatine transporter SLC6A8 by SPAK and OSR1. Kidney Blood Press Res 39:546–554PubMedCrossRefGoogle Scholar
  30. Flatman PW (2008) Cotransporters, WNKs and hypertension: an update. Curr Opin Nephrol Hypertens 17:186–192PubMedCrossRefGoogle Scholar
  31. Foran E, Trotti D (2009) Glutamate transporters and the excitotoxic path to motor neuron degeneration in amyotrophic lateral sclerosis. Antioxid Redox Signal 11:1587–1602PubMedCentralPubMedCrossRefGoogle Scholar
  32. Fukaya M, Yamada K, Nagashima M, Tanaka K, Watanabe M (1999) Down-regulated expression of glutamate transporter GLAST in Purkinje cell-associated astrocytes of reeler and weaver mutant cerebella. Neurosci Res 34:165–175PubMedCrossRefGoogle Scholar
  33. Furgeson SB, Linas S (2010) Mechanisms of type I and type II pseudohypoaldosteronism. J Am Soc Nephrol 21:1842–1845PubMedCrossRefGoogle Scholar
  34. Furness DN, Lehre KP (1997) Immunocytochemical localization of a high-affinity glutamate-aspartate transporter, GLAST, in the rat and guinea-pig cochlea. Eur J Neurosci 9:1961–1969PubMedCrossRefGoogle Scholar
  35. Gagnon KB, Delpire E (2010) On the substrate recognition and negative regulation of SPAK, a kinase modulating Na+-K+-2Cl- cotransport activity. Am J Physiol Cell Physiol 299:C614–C620PubMedCentralPubMedCrossRefGoogle Scholar
  36. Gagnon KB, Delpire E (2012) Molecular physiology of SPAK and OSR1: two Ste20-related protein kinases regulating ion transport. Physiol Rev 92:1577–1617PubMedCentralPubMedCrossRefGoogle Scholar
  37. Gaillet S, Plachez C, Malaval F, Bezine MF, Recasens M (2001) Transient increase in the high affinity [3H]-L-glutamate uptake activity during in vitro development of hippocampal neurons in culture. Neurochem Int 38:293–301PubMedCrossRefGoogle Scholar
  38. Gehring EM, Zurn A, Klaus F, Laufer J, Sopjani M, Lindner R, Strutz-Seebohm N, Tavare JM, Boehmer C, Palmada M, Lang UE, Seebohm G, Lang F (2009) Regulation of the glutamate transporter EAAT2 by PIKfyve. Cell Physiol Biochem 24:361–368PubMedCrossRefGoogle Scholar
  39. Gibb SL, Boston-Howes W, Lavina ZS, Gustincich S, Brown RH Jr, Pasinelli P, Trotti D (2007) A caspase-3-cleaved fragment of the glial glutamate transporter EAAT2 is sumoylated and targeted to promyelocytic leukemia nuclear bodies in mutant SOD1-linked amyotrophic lateral sclerosis. J Biol Chem 282:32480–32490PubMedCrossRefGoogle Scholar
  40. Gimenez I (2006) Molecular mechanisms and regulation of furosemide-sensitive Na-K-Cl cotransporters. Curr Opin Nephrol Hypertens 15:517–523PubMedCrossRefGoogle Scholar
  41. Glover M, O’Shaughnessy KM (2011) SPAK and WNK kinases: a new target for blood pressure treatment? Curr Opin Nephrol Hypertens 20:16–22PubMedCrossRefGoogle Scholar
  42. Glover M, Zuber AM, O’Shaughnessy KM (2011) Hypertension, dietary salt intake, and the role of the thiazide-sensitive sodium chloride transporter NCCT. Cardiovasc Ther 29:68–76PubMedCrossRefGoogle Scholar
  43. Gray C, Marie H, Arora M, Tanaka K, Boyde A, Jones S, Attwell D (2001) Glutamate does not play a major role in controlling bone growth. J Bone Miner Res 16:742–749PubMedCrossRefGoogle Scholar
  44. Hoffmann EK (2011) Ion channels involved in cell volume regulation: effects on migration, proliferation, and programmed cell death in non adherent EAT cells and adherent ELA cells. Cell Physiol Biochem 28:1061–1078PubMedCrossRefGoogle Scholar
  45. Hoffmann EK, Lambert IH, Pedersen SF (2009) Physiology of cell volume regulation in vertebrates. Physiol Rev 89:193–277PubMedCrossRefGoogle Scholar
  46. Hosseinzadeh Z, Dong L, Bhavsar SK, Warsi J, Almilaji A, Lang F (2013a) Upregulation of peptide transporters PEPT1 and PEPT2 by Janus kinase JAK2. Cell Physiol Biochem 31:673–682PubMedCrossRefGoogle Scholar
  47. Hosseinzadeh Z, Sopjani M, Pakladok T, Bhavsar SK, Lang F (2013b) Downregulation of KCNQ4 by Janus kinase 2. J Membr Biol 246:335–341PubMedCrossRefGoogle Scholar
  48. Hosseinzadeh Z, Luo D, Sopjani M, Bhavsar SK, Lang F (2014) Down-regulation of the epithelial Na(+) channel ENaC by Janus kinase 2. J Membr Biol 247:331–338PubMedCrossRefGoogle Scholar
  49. Huang CL, Yang SS, Lin SH (2008) Mechanism of regulation of renal ion transport by WNK kinases. Curr Opin Nephrol Hypertens 17:519–525PubMedCrossRefGoogle Scholar
  50. Huggett J, Vaughan-Thomas A, Mason D (2000) The open reading frame of the Na(+)-dependent glutamate transporter GLAST-1 is expressed in bone and a splice variant of this molecule is expressed in bone and brain. FEBS Lett 485:13–18PubMedCrossRefGoogle Scholar
  51. Hurtado O, Pradillo JM, Fernandez-Lopez D, Morales JR, Sobrino T, Castillo J, Alborch E, Moro MA, Lizasoain I (2008) Delayed post-ischemic administration of CDP-choline increases EAAT2 association to lipid rafts and affords neuroprotection in experimental stroke. Neurobiol Dis 29:123–131PubMedCrossRefGoogle Scholar
  52. Kahle KT, Rinehart J, Lifton RP (2010) Phosphoregulation of the Na-K-2Cl and K-Cl cotransporters by the WNK kinases. Biochim Biophys Acta 1802:1150–1158PubMedCentralPubMedCrossRefGoogle Scholar
  53. Karlsson RM, Tanaka K, Heilig M, Holmes A (2008) Loss of glial glutamate and aspartate transporter (excitatory amino acid transporter 1) causes locomotor hyperactivity and exaggerated responses to psychotomimetics: rescue by haloperidol and metabotropic glutamate 2/3 agonist. Biol Psychiatry 64:810–814PubMedCentralPubMedCrossRefGoogle Scholar
  54. Karlsson RM, Tanaka K, Saksida LM, Bussey TJ, Heilig M, Holmes A (2009) Assessment of glutamate transporter GLAST (EAAT1)-deficient mice for phenotypes relevant to the negative and executive/cognitive symptoms of schizophrenia. Neuropsychopharmacology 34:1578–1589PubMedCentralPubMedCrossRefGoogle Scholar
  55. Kimmich GA, Roussie J, Manglapus M, Randles J (2001) Characterization of Na+-coupled glutamate/aspartate transport by a rat brain astrocyte line expressing GLAST and EAAC1. J Membr Biol 182:17–30PubMedGoogle Scholar
  56. Lang F (2007) Mechanisms and significance of cell volume regulation. J Am Coll Nutr 26:613S–623SPubMedCrossRefGoogle Scholar
  57. Lang UE, Puls I, Muller DJ, Strutz-Seebohm N, Gallinat J (2007) Molecular mechanisms of schizophrenia. Cell Physiol Biochem 20:687–702PubMedCrossRefGoogle Scholar
  58. Lawton DM, Furness DN, Lindemann B, Hackney CM (2000) Localization of the glutamate-aspartate transporter, GLAST, in rat taste buds. Eur J Neurosci 12:3163–3171PubMedCrossRefGoogle Scholar
  59. Lee JA, Long Z, Nimura N, Iwatsubo T, Imai K, Homma H (2001) Localization, transport, and uptake of D-aspartate in the rat adrenal and pituitary glands. Arch Biochem Biophys 385:242–249PubMedCrossRefGoogle Scholar
  60. Lehre KP, Danbolt NC (1998) The number of glutamate transporter subtype molecules at glutamatergic synapses: chemical and stereological quantification in young adult rat brain. J Neurosci 18:8751–8757PubMedGoogle Scholar
  61. Li HS, Niedzielski AS, Beisel KW, Hiel H, Wenthold RJ, Morley BJ (1994) Identification of a glutamate/aspartate transporter in the rat cochlea. Hear Res 78:235–242PubMedCrossRefGoogle Scholar
  62. Li S, Mallory M, Alford M, Tanaka S, Masliah E (1997) Glutamate transporter alterations in Alzheimer disease are possibly associated with abnormal APP expression. J Neuropathol Exp Neurol 56:901–911PubMedCrossRefGoogle Scholar
  63. Lin SH, Yu IS, Jiang ST, Lin SW, Chu P, Chen A, Sytwu HK, Sohara E, Uchida S, Sasaki S, Yang SS (2011) Impaired phosphorylation of Na(+)-K(+)-2Cl(-) cotransporter by oxidative stress-responsive kinase-1 deficiency manifests hypotension and Bartter-like syndrome. Proc Natl Acad Sci USA 108:17538–17543PubMedCentralPubMedCrossRefGoogle Scholar
  64. Markowitz AJ, White MG, Kolson DL, Jordan-Sciutto KL (2007) Cellular interplay between neurons and glia: toward a comprehensive mechanism for excitotoxic neuronal loss in neurodegeneration. Cellscience 4:111–146PubMedCentralPubMedGoogle Scholar
  65. Mason DJ, Suva LJ, Genever PG, Patton AJ, Steuckle S, Hillam RA, Skerry TM (1997) Mechanically regulated expression of a neural glutamate transporter in bone: a role for excitatory amino acids as osteotropic agents? Bone 20:199–205PubMedCrossRefGoogle Scholar
  66. Matsumoto Y, Suzuki A, Ishii G, Oshino S, Otani K, Goto K (2007) The -181 A/C polymorphism in the excitatory amino acid transporter-2 gene promoter affects the personality trait of reward dependence in healthy subjects. Neurosci Lett 427:99–102PubMedCrossRefGoogle Scholar
  67. Mercier-Zuber A, O’Shaughnessy KM (2011) Role of SPAK and OSR1 signalling in the regulation of NaCl cotransporters. Curr Opin Nephrol Hypertens 20:534–540PubMedCrossRefGoogle Scholar
  68. Milton ID, Banner SJ, Ince PG, Piggott NH, Fray AE, Thatcher N, Horne CH, Shaw PJ (1997) Expression of the glial glutamate transporter EAAT2 in the human CNS: an immunohistochemical study. Brain Res Mol Brain Res 52:17–31PubMedCrossRefGoogle Scholar
  69. Miyazaki H, Strange K (2012) Differential regulation of a CLC anion channel by SPAK kinase ortholog-mediated multisite phosphorylation. Am J Physiol Cell Physiol 302:C1702–C1712PubMedCentralPubMedCrossRefGoogle Scholar
  70. Munch C, Zhu BG, Mink A, Seefried U, Riepe MW, Ludolph AC, Meyer T (2008) Chemical hypoxia facilitates alternative splicing of EAAT2 in presymptomatic APP23 transgenic mice. Neurochem Res 33:1005–1010PubMedCrossRefGoogle Scholar
  71. Munoz C, Almilaji A, Setiawan I, Foller M, Lang F (2013) Up-regulation of the inwardly rectifying K(+) channel Kir2.1 (KCNJ2) by protein kinase B (PKB/Akt) and PIKfyve. J Membr Biol 246:189–197PubMedCrossRefGoogle Scholar
  72. Nomura S, Takano-Yamamoto T (2000) Molecular events caused by mechanical stress in bone. Matrix Biol 19:91–96PubMedCrossRefGoogle Scholar
  73. O’Reilly M, Marshall E, Speirs HJ, Brown RW (2003) WNK1, a gene within a novel blood pressure control pathway, tissue-specifically generates radically different isoforms with and without a kinase domain. J Am Soc Nephrol 14:2447–2456PubMedCrossRefGoogle Scholar
  74. Pakladok T, Almilaji A, Munoz C, Alesutan I, Lang F (2013) PIKfyve sensitivity of hERG channels. Cell Physiol Biochem 31:785–794PubMedCrossRefGoogle Scholar
  75. Pampliega O, Domercq M, Villoslada P, Sepulcre J, Rodriguez-Antiguedad A, Matute C (2008) Association of an EAAT2 polymorphism with higher glutamate concentration in relapsing multiple sclerosis. J Neuroimmunol 195:194–198PubMedCrossRefGoogle Scholar
  76. Park HW, Nam JH, Kim JY, Namkung W, Yoon JS, Lee JS, Kim KS, Venglovecz V, Gray MA, Kim KH, Lee MG (2010) Dynamic regulation of CFTR bicarbonate permeability by [Cl-]i and its role in pancreatic bicarbonate secretion. Gastroenterology 139:620–631PubMedCrossRefGoogle Scholar
  77. Pathare G, Foller M, Daryadel A, Mutig K, Bogatikov E, Fajol A, Almilaji A, Michael D, Stange G, Voelkl J, Wagner CA, Bachmann S, Lang F (2012) OSR1-sensitive renal tubular phosphate reabsorption. Kidney Blood Press Res 36:149–161PubMedCrossRefGoogle Scholar
  78. Plachez C, Danbolt NC, Recasens M (2000) Transient expression of the glial glutamate transporters GLAST and GLT in hippocampal neurons in primary culture. J Neurosci Res 59:587–593PubMedCrossRefGoogle Scholar
  79. Rafiqi FH, Zuber AM, Glover M, Richardson C, Fleming S, Jovanovic S, Jovanovic A, O’Shaughnessy KM, Alessi DR (2010) Role of the WNK-activated SPAK kinase in regulating blood pressure. EMBO Mol Med 2:63–75PubMedCentralPubMedCrossRefGoogle Scholar
  80. Rakhade SN, Loeb JA (2008) Focal reduction of neuronal glutamate transporters in human neocortical epilepsy. Epilepsia 49:226–236PubMedCrossRefGoogle Scholar
  81. Rakhade SN, Shah AK, Agarwal R, Yao B, Asano E, Loeb JA (2007) Activity-dependent gene expression correlates with interictal spiking in human neocortical epilepsy. Epilepsia 48(Suppl 5):86–95PubMedCrossRefGoogle Scholar
  82. Redecker P, Pabst H (2000) Immunohistochemical study of the glutamate transporter proteins GLT-1 and GLAST in rat and gerbil pineal gland. J Pineal Res 28:179–184PubMedCrossRefGoogle Scholar
  83. Richardson C, Alessi DR (2008) The regulation of salt transport and blood pressure by the WNK-SPAK/OSR1 signalling pathway. J Cell Sci 121:3293–3304PubMedCrossRefGoogle Scholar
  84. Richardson C, Sakamoto K, de los HP, Deak M, Campbell DG, Prescott AR, Alessi DR (2011) Regulation of the NKCC2 ion cotransporter by SPAK-OSR1-dependent and -independent pathways. J Cell Sci 124:789–800PubMedCentralPubMedCrossRefGoogle Scholar
  85. Rothstein JD, Martin LJ, Kuncl RW (1992) Decreased glutamate transport by the brain and spinal cord in amyotrophic lateral sclerosis. N Engl J Med 326:1464–1468PubMedCrossRefGoogle Scholar
  86. Rothstein JD, Martin L, Levey AI, Dykes-Hoberg M, Jin L, Wu D, Nash N, Kuncl RW (1994) Localization of neuronal and glial glutamate transporters. Neuron 13:713–725PubMedCrossRefGoogle Scholar
  87. Rothstein JD, Van Kammen M, Levey AI, Martin LJ, Kuncl RW (1995) Selective loss of glial glutamate transporter GLT-1 in amyotrophic lateral sclerosis. Ann Neurol 38:73–84PubMedCrossRefGoogle Scholar
  88. Rothstein JD, Dykes-Hoberg M, Pardo CA, Bristol LA, Jin L, Kuncl RW, Kanai Y, Hediger MA, Wang Y, Schielke JP, Welty DF (1996) Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron 16:675–686PubMedCrossRefGoogle Scholar
  89. Rothstein JD, Patel S, Regan MR, Haenggeli C, Huang YH, Bergles DE, Jin L, Dykes Hoberg M, Vidensky S, Chung DS, Toan SV, Bruijn LI, Su ZZ, Gupta P, Fisher PB (2005) Beta-lactam antibiotics offer neuroprotection by increasing glutamate transporter expression. Nature 433:73–77PubMedCrossRefGoogle Scholar
  90. Rumbaugh JA, Li G, Rothstein J, Nath A (2007) Ceftriaxone protects against the neurotoxicity of human immunodeficiency virus proteins. J Neurovirol 13:168–172PubMedCrossRefGoogle Scholar
  91. Sandhu JK, Sikorska M, Walker PR (2002) Characterization of astrocytes derived from human NTera-2/D1 embryonal carcinoma cells. J Neurosci Res 68:604–614PubMedCrossRefGoogle Scholar
  92. Sheldon AL, Robinson MB (2007) The role of glutamate transporters in neurodegenerative diseases and potential opportunities for intervention. Neurochem Int 51:333–355PubMedCentralPubMedCrossRefGoogle Scholar
  93. Shigeri Y, Shimamoto K, Yasuda-Kamatani Y, Seal RP, Yumoto N, Nakajima T, Amara SG (2001) Effects of threo-beta-hydroxyaspartate derivatives on excitatory amino acid transporters (EAAT4 and EAAT5). J Neurochem 79:297–302PubMedCrossRefGoogle Scholar
  94. Suarez I, Bodega G, Fernandez B (2000) Modulation of glutamate transporters (GLAST, GLT-1 and EAAC1) in the rat cerebellum following portocaval anastomosis. Brain Res 859:293–302PubMedCrossRefGoogle Scholar
  95. Suzuki K, Ikegaya Y, Matsuura S, Kanai Y, Endou H, Matsuki N (2001) Transient upregulation of the glial glutamate transporter GLAST in response to fibroblast growth factor, insulin-like growth factor and epidermal growth factor in cultured astrocytes. J Cell Sci 114:3717–3725PubMedGoogle Scholar
  96. Takumi Y, Matsubara A, Danbolt NC, Laake JH, Storm-Mathisen J, Usami S, Shinkawa H, Ottersen OP (1997) Discrete cellular and subcellular localization of glutamine synthetase and the glutamate transporter GLAST in the rat vestibular end organ. Neuroscience 79:1137–1144PubMedCrossRefGoogle Scholar
  97. Tanaka K, Watase K, Manabe T, Yamada K, Watanabe M, Takahashi K, Iwama H, Nishikawa T, Ichihara N, Kikuchi T, Okuyama S, Kawashima N, Hori S, Takimoto M, Wada K (1997) Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT-1. Science 276:1699–1702PubMedCrossRefGoogle Scholar
  98. Tian G, Lai L, Guo H, Lin Y, Butchbach ME, Chang Y, Lin CL (2007) Translational control of glial glutamate transporter EAAT2 expression. J Biol Chem 282:1727–1737PubMedCrossRefGoogle Scholar
  99. Uchida S (2010) Pathophysiological roles of WNK kinases in the kidney. Pflugers Arch 460:695–702PubMedCrossRefGoogle Scholar
  100. Ullensvang K, Lehre KP, Storm-Mathisen J, Danbolt NC (1997) Differential developmental expression of the two rat brain glutamate transporter proteins GLAST and GLT. Eur J Neurosci 9:1646–1655PubMedCrossRefGoogle Scholar
  101. Utsumi M, Ohno K, Onchi H, Sato K, Tohyama M (2001) Differential expression patterns of three glutamate transporters (GLAST, GLT1 and EAAC1) in the rat main olfactory bulb. Brain Res Mol Brain Res 92:1–11PubMedCrossRefGoogle Scholar
  102. van Landeghem FK, Weiss T, Oehmichen M, von Deimling A (2006) Decreased expression of glutamate transporters in astrocytes after human traumatic brain injury. J Neurotrauma 23:1518–1528PubMedCrossRefGoogle Scholar
  103. Vercellino M, Merola A, Piacentino C, Votta B, Capello E, Mancardi GL, Mutani R, Giordana MT, Cavalla P (2007) Altered glutamate reuptake in relapsing-remitting and secondary progressive multiple sclerosis cortex: correlation with microglia infiltration, demyelination, and neuronal and synaptic damage. J Neuropathol Exp Neurol 66:732–739PubMedCrossRefGoogle Scholar
  104. Villa F, Deak M, Alessi DR, van Aalten DM (2008) Structure of the OSR1 kinase, a hypertension drug target. Proteins 73:1082–1087PubMedCrossRefGoogle Scholar
  105. Vitari AC, Deak M, Morrice NA, Alessi DR (2005) The WNK1 and WNK4 protein kinases that are mutated in Gordon’s hypertension syndrome phosphorylate and activate SPAK and OSR1 protein kinases. Biochem J 391:17–24PubMedCentralPubMedCrossRefGoogle Scholar
  106. Vitari AC, Thastrup J, Rafiqi FH, Deak M, Morrice NA, Karlsson HK, Alessi DR (2006) Functional interactions of the SPAK/OSR1 kinases with their upstream activator WNK1 and downstream substrate NKCC1. Biochem J 397:223–231PubMedCentralPubMedCrossRefGoogle Scholar
  107. Vorwerk CK, Naskar R, Schuettauf F, Quinto K, Zurakowski D, Gochenauer G, Robinson MB, Mackler SA, Dreyer EB (2000) Depression of retinal glutamate transporter function leads to elevated intravitreal glutamate levels and ganglion cell death. Invest Ophthalmol Vis Sci 41:3615–3621PubMedGoogle Scholar
  108. Warsi J, Dong L, Elvira B, Salker MS, Shumilina E, Hosseinzadeh Z, Lang F (2014a) SPAK dependent regulation of peptide transporters PEPT1 and PEPT2. Kidney Blood Press Res 39:388–398PubMedCrossRefGoogle Scholar
  109. Warsi J, Elvira B, Bissinger R, Shumilina E, Hosseinzadeh Z, Lang F (2014b) Downregulation of peptide transporters PEPT1 and PEPT2 by oxidative stress responsive kinase OSR1. Kidney Blood Press Res 39:591–599PubMedCrossRefGoogle Scholar
  110. Warsi J, Hosseinzadeh Z, Elvira B, Bissinger R, Shumilina E, Lang F (2014c) Regulation of ClC-2 activity by SPAK and OSR1. Kidney Blood Press Res 39:378–387PubMedCrossRefGoogle Scholar
  111. Wilson FH, Disse-Nicodeme S, Choate KA, Ishikawa K, Nelson-Williams C, Desitter I, Gunel M, Milford DV, Lipkin GW, Achard JM, Feely MP, Dussol B, Berland Y, Unwin RJ, Mayan H, Simon DB, Farfel Z, Jeunemaitre X, Lifton RP (2001) Human hypertension caused by mutations in WNK kinases. Science 293:1107–1112PubMedCrossRefGoogle Scholar
  112. Yang SS, Lo YF, Wu CC, Lin SW, Yeh CJ, Chu P, Sytwu HK, Uchida S, Sasaki S, Lin SH (2010) SPAK-knockout mice manifest Gitelman syndrome and impaired vasoconstriction. J Am Soc Nephrol 21:1868–1877PubMedCentralPubMedCrossRefGoogle Scholar
  113. Yang L, Cai X, Zhou J, Chen S, Chen Y, Chen Z, Wang Q, Fang Z, Zhou L (2013) STE20/SPS1-related proline/alanine-rich kinase is involved in plasticity of GABA signaling function in a mouse model of acquired epilepsy. PLoS One 8:e74614PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Abeer Abousaab
    • 1
  • Jamshed Warsi
    • 1
  • Bernat Elvira
    • 1
  • Ioana Alesutan
    • 1
  • Zohreh Hoseinzadeh
    • 1
  • Florian Lang
    • 1
  1. 1.Department of PhysiologyUniversity of TübingenTübingenGermany

Personalised recommendations