The Journal of Membrane Biology

, Volume 248, Issue 5, pp 865–881 | Cite as

Mathematical Models Describing Chinese Hamster Ovary Cell Death Due to Electroporation In Vitro

Article

Abstract

Electroporation is a phenomenon used in the treatment of tumors by electrochemotherapy, non-thermal ablation with irreversible electroporation, and gene therapy. When treating patients, either predefined or variable electrode geometry is used. Optimal pulse parameters are predetermined for predefined electrode geometry, while they must be calculated for each specific case for variable electrode geometry. The position and number of electrodes are also determined for each patient. It is currently assumed that above a certain experimentally determined value of electric field, all cells are permeabilized/destroyed and under it they are unaffected. In this paper, mathematical models of survival in which the probability of cell death is continuously distributed from 0 to 100 % are proposed and evaluated. Experiments were performed on cell suspensions using electrical parameters similar to standard electrochemotherapy and irreversible electroporation parameters. The proportion of surviving cells was determined using clonogenic assay for assessing the ability of a cell to grow into a colony. Various mathematical models (first-order kinetics, Hülsheger, Peleg-Fermi, Weibull, logistic, adapted Gompertz, Geeraerd) were fitted to experimental data using a non-linear least-squares method. The fit was evaluated by calculating goodness of fit and by observing the trend of values of models’ parameters. The most appropriate models of cell survival as a function of treatment time were the adapted Gompertz and the Geeraerd models and, as a function of the electric field, the logistic, adapted Gompertz and Peleg-Fermi models. The next steps to be performed are validation of the most appropriate models on tissues and determination of the models’ predictive power.

Keywords

Clonogenic assay Cell death probability Treatment planning Electrochemotherapy Predictive models Non-thermal irreversible electroporation 

References

  1. Álvarez I, Virto R, Raso J, Condón S (2003) Comparing predicting models for the Escherichia coli inactivation by pulsed electric fields. Innov Food Sci Emerg Technol 4:195–202. doi:10.1016/S1466-8564(03)00004-3 CrossRefGoogle Scholar
  2. Bigelow WD (1921) The logarithmic nature of thermal death time curves. J Infect Dis 29:528–536CrossRefGoogle Scholar
  3. Calvet CY, André FM, Mir LM (2014) Dual therapeutic benefit of electroporation-mediated DNA vaccination in vivo: enhanced gene transfer and adjuvant activity. OncoImmunology 3:e28540. doi:10.4161/onci.28540 PubMedCentralCrossRefPubMedGoogle Scholar
  4. Campana LG, Di Barba P, Dughiero F, Rossi CR, Sieni E (2013) Optimal needle positioning for electrochemotherapy: a constrained multiobjective strategy. IEEE Trans Magn 49:2141–2144. doi:10.1109/TMAG.2013.2241031 CrossRefGoogle Scholar
  5. Canatella PJ, Karr JF, Petros JA, Prausnitz MR (2001) Quantitative study of electroporation-mediated molecular uptake and cell viability. Biophys J 80:755–764PubMedCentralCrossRefPubMedGoogle Scholar
  6. Cannon R, Ellis S, Hayes D, Narayanan G, Martin RCG (2013) Safety and early efficacy of irreversible electroporation for hepatic tumors in proximity to vital structures. J Surg Oncol 107:544–549. doi:10.1002/jso.23280 CrossRefPubMedGoogle Scholar
  7. Čemažar M, Jarm T, Miklavčič D, Maček Lebar A, Ihan A, Kopitar NA, Serša G (1998) Effect of electric-field intensity on electropermeabilization and electrosensitivity of various tumor-cell lines in vitro. Electro-Magnetobiology 17:263–272CrossRefGoogle Scholar
  8. Cole MB, Davies KW, Munro G, Holyoak CD, Kilsby DC (1993) A vitalistic model to describe the thermal inactivation of Listeria monocytogenes. J Ind Microbiol 12:232–239. doi:10.1007/BF01584195 CrossRefGoogle Scholar
  9. Čorović S, Županič A, Kranjc S, Al Sakere B, Leroy-Willig A, Mir LM, Miklavčič D (2010) The influence of skeletal muscle anisotropy on electroporation: in vivo study and numerical modeling. Med Biol Eng Comput 48:637–648. doi:10.1007/s11517-010-0614-1 PubMedCentralCrossRefPubMedGoogle Scholar
  10. Čorović S, Mir LM, Miklavčič D (2012) In vivo muscle electroporation threshold determination: realistic numerical models and in vivo experiments. J Membr Biol 245:509–520. doi:10.1007/s00232-012-9432-8 CrossRefPubMedGoogle Scholar
  11. Daud AI, DeConti RC, Andrews S, Urbas P, Riker AI, Sondak VK, Munster PN, Sullivan DM, Ugen KE, Messina JL, Heller R (2008) Phase I trial of interleukin-12 plasmid electroporation in patients with metastatic melanoma. J Clin Oncol 26:5896–5903PubMedCentralCrossRefPubMedGoogle Scholar
  12. Davalos RV, Mir LM, Rubinsky B (2005) Tissue ablation with irreversible electroporation. Ann Biomed Eng 33:223–231. doi:10.1007/s10439-005-8981-8 CrossRefPubMedGoogle Scholar
  13. Delemotte L, Tarek M (2012) Molecular dynamics simulations of lipid membrane electroporation. J Membr Biol 245:531–543. doi:10.1007/s00232-012-9434-6 CrossRefPubMedGoogle Scholar
  14. Denet A-R, Vanbever R, Préat V (2004) Skin electroporation for transdermal and topical delivery. Adv Drug Deliv Rev 56:659–674. doi:10.1016/j.addr.2003.10.027 CrossRefPubMedGoogle Scholar
  15. Dermol J, Miklavčič D (2014) Predicting electroporation of cells in an inhomogeneous electric field based on mathematical modeling and experimental CHO-cell permeabilization to propidium iodide determination. Bioelectrochemistry 100:52–61CrossRefPubMedGoogle Scholar
  16. Edhemović I, Brecelj E, Gasljevič G, Marolt Mušič M, Gorjup V, Mali B, Jarm T, Kos B, Pavliha D, Grčar Kuzmanov B, Čemažar M, Snoj M, Miklavčič D, Gadžijev EM, Serša G (2014) Intraoperative electrochemotherapy of colorectal liver metastases: electrochemotherapy of liver metastases. J Surg Oncol 110:320–327CrossRefPubMedGoogle Scholar
  17. Franken NAP, Rodermond HM, Stap J, Haveman J, van Bree C (2006) Clonogenic assay of cells in vitro. Nat Protoc 1:2315–2319CrossRefPubMedGoogle Scholar
  18. Garcia PA, Rossmeisl JH, Neal RE, Ellis TL, Olson JD, Henao-Guerrero N, Robertson J, Davalos RV (2010) Intracranial nonthermal irreversible electroporation. In vivo analysis. J Membr Biol 236:127–136. doi:10.1007/s00232-010-9284-z CrossRefPubMedGoogle Scholar
  19. Garcia PA, Pancotto T, Rossmeisl JH, Henao-Guerrero N, Gustafson NR, Daniel GB, Robertson JL, Ellis TL, Davalos RV (2011a) Non-thermal irreversible electroporation (N-TIRE) and adjuvant fractionated radiotherapeutic multimodal therapy for intracranial malignant glioma in a canine patient. Technol Cancer Res Treat 10:73–83PubMedCentralPubMedGoogle Scholar
  20. Garcia PA, Rossmeisl JH, Neal RE, Ellis TL, Davalos RV (2011b) A parametric study delineating irreversible electroporation from thermal damage based on a minimally invasive intracranial procedure. Biomed Eng OnLine 10:34PubMedCentralCrossRefPubMedGoogle Scholar
  21. Garcia PA, Davalos RV, Miklavčič D (2014) A numerical investigation of the electric and thermal cell kill distributions in electroporation-based therapies in tissue. PLoS ONE 9:e103083PubMedCentralCrossRefPubMedGoogle Scholar
  22. Geeraerd AH, Herremans CH, Van Impe JF (2000) Structural model requirements to describe microbial inactivation during a mild heat treatment. Int J Food Microbiol 59:185–209CrossRefPubMedGoogle Scholar
  23. Golberg A, Rubinsky B (2010) A statistical model for multidimensional irreversible electroporation cell death in tissue. Biomed Eng OnLine 9:13PubMedCentralCrossRefPubMedGoogle Scholar
  24. Heller LC, Heller R (2010) Electroporation gene therapy preclinical and clinical trials for melanoma. Curr Gene Ther 10:312–317CrossRefPubMedGoogle Scholar
  25. Heller R, Cruz Y, Heller LC, Gilbert RA, Jaroszeski MJ (2010) Electrically mediated delivery of plasmid DNA to the skin, using a multielectrode array. Hum Gene Ther 21:357–362. doi:10.1089/hum.2009.065 PubMedCentralCrossRefPubMedGoogle Scholar
  26. Hülsheger H, Potel J, Niemann EG (1981) Killing of bacteria with electric pulses of high field strength. Radiat Environ Biophys 20:53–65CrossRefPubMedGoogle Scholar
  27. Jiang C, Davalos RV, Bischof JC (2015) A review of basic to clinical studies of irreversible electroporation therap. IEEE Trans Biomed Eng 62:4–20. doi:10.1109/TBME.2014.2367543 CrossRefPubMedGoogle Scholar
  28. Kotnik T, Kramar P, Pucihar G, Miklavčič D, Tarek M (2012) Cell membrane electroporation—Part 1: the phenomenon. IEEE Electr Insul Mag 28:14–23CrossRefGoogle Scholar
  29. Kotnik T, Frey W, Sack M, Haberl Meglič S, Peterka M, Miklavčič D (2015) Electroporation-based applications in biotechnology. Trends Biotechnol. doi:10.1016/j.tibtech.2015.06.002 PubMedGoogle Scholar
  30. Kranjc M, Bajd F, Serša I, Woo EJ, Miklavčič D (2012) Ex vivo and in silico feasibility study of monitoring electric field distribution in tissue during electroporation based treatments. PLoS ONE 7:e45737PubMedCentralCrossRefPubMedGoogle Scholar
  31. Kranjc M, Bajd F, Serša I, Miklavčič D (2014) Magnetic resonance electrical impedance tomography for measuring electrical conductivity during electroporation. Physiol Meas 35:985–996CrossRefPubMedGoogle Scholar
  32. Kranjc M, Markelc B, Bajd F, Čemažar M, Serša I, Blagus T, Miklavčič D (2015) In situ monitoring of electric field distribution in mouse tumor during electroporation. Radiology 274:115–123. doi:10.1148/radiol.14140311 CrossRefPubMedGoogle Scholar
  33. Linnert M, Iversen HK, Gehl J (2012) Multiple brain metastases—current management and perspectives for treatment with electrochemotherapy. Radiol Oncol. doi:10.2478/v10019-012-0042-y PubMedCentralPubMedGoogle Scholar
  34. Linton RH (1994) Use of the Gompertz Equation to Model Non-linear Survival Curves and Predict Temperature, pH, and Sodium Chloride Effects for Listeria monocytogenes Scott A. Faculty of the Virginia Polytechnic Institute and State University, BlacksburgGoogle Scholar
  35. Long G, Bakos G, Shires PK, Gritter L, Crissman JW, Harris JL, Clymer JW (2014) Histological and finite element analysis of cell death due to irreversible electroporation. Technol Cancer Res Treat 13:561–569PubMedCentralPubMedGoogle Scholar
  36. Mafart P, Couvert O, Gaillard S, Leguerinel I (2002) On calculating sterility in thermal preservation methods: application of the Weibull frequency distribution mode. Int J Food Microbiol 72:107–113CrossRefPubMedGoogle Scholar
  37. Mahnič-Kalamiza S, Vorobiev E, Miklavčič D (2014) Electroporation in food processing and biorefinery. J Membr Biol 247:1279–1304CrossRefPubMedGoogle Scholar
  38. Miklavčič D, Beravs K, Šemrov D, Čemažar M, Demšar F, Serša G (1998) The importance of electric field distribution for effective in vivo electroporation of tissues. Biophys J 74:2152–2158PubMedCentralCrossRefPubMedGoogle Scholar
  39. Miklavčič D, Šemrov D, Mekid H, Mir LM (2000) A validated model of in vivo electric field distribution in tissues for electrochemotherapy and for DNA electrotransfer for gene therapy. Biochim Biophys Acta BBA-Gen Subj 1523:73–83. doi:10.1016/S0304-4165(00)00101-X CrossRefGoogle Scholar
  40. Miklavčič D, Snoj M, Županič A, Kos B, Čemažar M, Kropivnik M, Bračko M, Pečnik T, Gadžijev EM, Serša G (2010) Towards treatment planning and treatment of deep-seated solid tumors by electrochemotherapy. Biomed Eng OnLine 9:10. doi:10.1186/1475-925X-9-10 PubMedCentralCrossRefPubMedGoogle Scholar
  41. Miklavčič D, Serša G, Brecelj E, Gehl J, Soden D, Bianchi G, Ruggieri P, Rossi CR, Campana LG, Jarm T (2012) Electrochemotherapy: technological advancements for efficient electroporation-based treatment of internal tumors. Med Biol Eng Comput 50:1213–1225. doi:10.1007/s11517-012-0991-8 PubMedCentralCrossRefPubMedGoogle Scholar
  42. Mir LM, Orlowski S, Poddevin B, Belehradek J (1992) Electrochemotherapy tumor treatment is improved by interleukin-2 stimulation of the host’s defenses. Eur Cytokine Netw 3:331–334PubMedGoogle Scholar
  43. Mir LM, Gehl J, Serša G, Collins CG, Garbay J-R, Billard V, Geertsen PF, Rudolf Z, O’Sullivan GC, Marty M (2006) Standard operating procedures of the electrochemotherapy: instructions for the use of bleomycin or cisplatin administered either systemically or locally and electric pulses delivered by the CliniporatorTM by means of invasive or non-invasive electrodes. Eur J Cancer Suppl 4:14–25CrossRefGoogle Scholar
  44. Neal RE 2nd, Garcia PA, Robertson JL, Davalos RV (2012) Experimental characterization and numerical modeling of tissue electrical conductivity during pulsed electric fields for irreversible electroporation treatment planning. IEEE Trans Biomed Eng 59:1076–1085CrossRefPubMedGoogle Scholar
  45. Neal RE 2nd, Rossmeisl JH, Robertson JL, Arena CB, Davis EM, Singh RN, Stallings J, Davalos RV (2013) Improved local and systemic anti-tumor efficacy for irreversible electroporation in immunocompetent versus immunodeficient mice. PLoS ONE 8:e64559. doi:10.1371/journal.pone.0064559 PubMedCentralCrossRefPubMedGoogle Scholar
  46. Neal RE 2nd, Millar JL, Kavnoudias H, Royce P, Rosenfeldt F, Pham A, Smith R, Davalos RV, Thomson KR (2014) In vivo characterization and numerical simulation of prostate properties for non-thermal irreversible electroporation ablation: characterized and Simulated Prostate IRE. Prostate. doi:10.1002/pros.22760 PubMedGoogle Scholar
  47. Neal RE 2nd, Garcia PA, Kavnoudias H, Rosenfeldt F, Mclean CA, Earl V, Bergman J, Davalos RV, Thomson KR (2015) In vivo irreversible electroporation kidney ablation: experimentally correlated numerical models. IEEE Trans Biomed Eng 62:561–569. doi:10.1109/TBME.2014.2360374 CrossRefPubMedGoogle Scholar
  48. Neu WK, Neu JC (2009) Theory of Electroporation. In: Efimov IR, Kroll MW, Tchou PJ (eds) Cardiac Bioelectric Therapy. Springer, US, Boston, MA, pp 133–161CrossRefGoogle Scholar
  49. Pakhomova ON, Gregory BW, Pakhomov AG (2013) Facilitation of electroporative drug uptake and cell killing by electrosensitization. J Cell Mol Med 17:154–159PubMedCentralCrossRefPubMedGoogle Scholar
  50. Peleg M (1995) A model of microbial survival after exposure to pulsed electric fields. J Sci Food Agric 67:93–99CrossRefGoogle Scholar
  51. Peleg M (2006) Advanced quantitative microbiology for foods and biosystems: models for predicting growth and inactivation. CRC series in contemporary food science. Taylor & Francis, Boca RatonCrossRefGoogle Scholar
  52. Pucihar G, Mir LM, Miklavčič D (2002) The effect of pulse repetition frequency on the uptake into electropermeabilized cells in vitro with possible applications in electrochemotherapy. Bioelectrochem Amst Neth 57:167–172CrossRefGoogle Scholar
  53. Pucihar G, Krmelj J, Reberšek M, Napotnik T, Miklavčič D (2011) Equivalent pulse parameters for electroporation. IEEE Trans Biomed Eng 58:3279–3288CrossRefPubMedGoogle Scholar
  54. Sack M, Sigler J, Frenzel S, Eing C, Arnold J, Michelberger T, Frey W, Attmann F, Stukenbrock L, Müller G (2010) Research on industrial-scale electroporation devices fostering the extraction of substances from biological tissue. Food Eng Rev 2:147–156. doi:10.1007/s12393-010-9017-1 CrossRefGoogle Scholar
  55. Santillana Farakos SM, Frank JF, Schaffner DW (2013) Modeling the influence of temperature, water activity and water mobility on the persistence of Salmonella in low-moisture food. Int J Food Microbiol 166:280–293. doi:10.1016/j.ijfoodmicro.2013.07.007 CrossRefGoogle Scholar
  56. Šel D, Lebar AM, Miklavčič D (2007) Feasibility of employing model-based optimization of pulse amplitude and electrode distance for effective tumor electropermeabilization. IEEE Trans Biomed Eng 54:773–781. doi:10.1109/TBME.2006.889196 CrossRefPubMedGoogle Scholar
  57. Serša G, Miklavčič D, Čemažar M, Belehradek J, Jarm T, Mir LM (1997) Electrochemotherapy with CDDP on LPB sarcoma: comparison of the anti-tumor effectiveness in immunocompetent and immunodeficient mice. Bioelectrochem Bioenerg 43:270–283Google Scholar
  58. Silve A, Guimerà Brunet A, Al-Sakere B, Ivorra A, Mir LM (2014) Comparison of the effects of the repetition rate between microsecond and nanosecond pulses: electropermeabilization-induced electro-desensitization? Biochim Biophys Acta BBA-Gen Subj 1840:2139–2151CrossRefGoogle Scholar
  59. Stone G, Chapman B, Lovell D (2009) Development of a log-quadratic model to describe microbial inactivation, illustrated by thermal inactivation of Clostridium botulinum. Appl Environ Microbiol 75:6998–7005. doi:10.1128/AEM.01067-09 PubMedCentralCrossRefPubMedGoogle Scholar
  60. Van Boekel M (2002) On the use of the Weibull model to describe thermal inactivation of microbial vegetative cells. Int J Food Microbiol 74:139–159. doi:10.1016/S0168-1605(01)00742-5 CrossRefPubMedGoogle Scholar
  61. Weaver JC (1993) Electroporation: a general phenomenon for manipulating cells and tissues. J Cell Biochem 51:426–435CrossRefPubMedGoogle Scholar
  62. Weaver JC, Chizmadzhev YA (1996) Theory of electroporation: a review. Bioelectrochem Bioenerg 41:135–160. doi:10.1016/S0302-4598(96)05062-3 CrossRefGoogle Scholar
  63. Yarmush ML, Golberg A, Serša G, Kotnik T, Miklavčič D (2014) Electroporation-based technologies for medicine: principles, applications, and challenges. Annu Rev Biomed Eng 16:295–320. doi:10.1146/annurev-bioeng-071813-104622 CrossRefPubMedGoogle Scholar
  64. Županič A, Miklavčič D (2011) Tissue heating during tumor ablation with irreversible electroporation. Elektrotehniški Vestn Engl Ed 78:42–47Google Scholar
  65. Županič A, Kos B, Miklavčič D (2012) Treatment planning of electroporation-based medical interventions: electrochemotherapy, gene electrotransfer and irreversible electroporation. Phys Med Biol 57:5425–5440. doi:10.1088/0031-9155/57/17/5425 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Faculty of Electrical EngineeringUniversity of LjubljanaLjubljanaSlovenia

Personalised recommendations