The Journal of Membrane Biology

, Volume 247, Issue 12, pp 1279–1304 | Cite as

Electroporation in Food Processing and Biorefinery

  • Samo Mahnič-Kalamiza
  • Eugène Vorobiev
  • Damijan MiklavčičEmail author


Electroporation is a method of treatment of plant tissue that due to its nonthermal nature enables preservation of the natural quality, colour and vitamin composition of food products. The range of processes where electroporation was shown to preserve quality, increase extract yield or optimize energy input into the process is overwhelming, though not exhausted; e.g. extraction of valuable compounds and juices, dehydration, cryopreservation, etc. Electroporation is—due to its antimicrobial action—a subject of research as one stage of the pasteurization or sterilization process, as well as a method of plant metabolism stimulation. This paper provides an overview of electroporation as applied to plant materials and electroporation applications in food processing, a quick summary of the basic technical aspects on the topic, and a brief discussion on perspectives for future research and development in the field. The paper is a review in the very broadest sense of the word, written with the purpose of orienting the interested newcomer to the field of electroporation applications in food technology towards the pertinent, highly relevant and more in-depth literature from the respective subdomains of electroporation research.


Electroporation Pulsed electric fields Extraction Microbial inactivation Biorefinery Food processing 



This paper was in part made possible due to the networking activities of the COST (“European Cooperation in Science and Technology”) Action (project) TD1104 – EP4Bio 2 Med (, as well as the financial support from the Slovenian Research Agency (ARRS – “Javna agencija za raziskovalno dejavnost Republike Slovenije”) and the French Ministry of Higher Education and Research (MESR – “Ministère de l’Enseignement supérieur et de la Recherche”). The paper was written within the scope of the European Associated Laboratory on Applications of Pulsed Electric Fields in Biology and Medicine (LEA EBAM). The authors also wish to acknowledge Matej Reberšek as the author of the original image with diagram representation of electroporation applications, the idea of which was adopted by the authors in preparing Fig. 1.


  1. Adam F, Abert-Vian M, Peltier G, Chemat F (2012) “Solvent-free” ultrasound-assisted extraction of lipids from fresh microalgae cells: a green, clean and scalable process. Bioresour Technol 114:457–465. doi: 10.1016/j.biortech.2012.02.096 PubMedCrossRefGoogle Scholar
  2. Ade-Omowaye BIO, Angersbach A, Taiwo KA, Knorr D (2001) Use of pulsed electric field pre-treatment to improve dehydration characteristics of plant based foods. Trends Food Sci Technol 12:285–295. doi: 10.1016/S0924-2244(01)00095-4 CrossRefGoogle Scholar
  3. Al-Sakere B, André F, Bernat C et al (2007) Tumor ablation with irreversible electroporation. PLoS One 2:e1135. doi: 10.1371/journal.pone.0001135 PubMedCentralPubMedCrossRefGoogle Scholar
  4. Álvarez I, Condón S, Raso J (2006) Microbial Inactivation By Pulsed Electric Fields. In: Raso J, Heinz V (eds) Pulsed electric fields technology for the food industry. Springer, New York, pp 97–129CrossRefGoogle Scholar
  5. Amami E, Vorobiev E, Kechaou N (2006) Modelling of mass transfer during osmotic dehydration of apple tissue pre-treated by pulsed electric field. LWT Food Sci Technol 39:1014–1021. doi: 10.1016/j.lwt.2006.02.017 CrossRefGoogle Scholar
  6. Aronsson K, Rönner U, Borch E (2005) Inactivation of Escherichia coli, Listeria innocua and Saccharomyces cerevisiae in relation to membrane permeabilization and subsequent leakage of intracellular compounds due to pulsed electric field processing. Int J Food Microbiol 99:19–32. doi: 10.1016/j.ijfoodmicro.2004.07.012 PubMedCrossRefGoogle Scholar
  7. Asavasanti S, Ersus S, Ristenpart W et al (2010) Critical electric field strengths of onion tissues treated by pulsed electric fields. J Food Sci 75:E433–E443. doi: 10.1111/j.1750-3841.2010.01768.x PubMedCrossRefGoogle Scholar
  8. Barbosa-Canovas GV, Pothakamury UR, Palou E, Swanson BG (1997) Nonthermal preservation of foods. CRC Press, Boca RatonGoogle Scholar
  9. Bazhal M, Lebovka N, Vorobiev E (2003) Optimisation of pulsed electric field strength for electroplasmolysis of vegetable tissues. Biosyst Eng 86:339–345. doi: 10.1016/S1537-5110(03)00139-9 CrossRefGoogle Scholar
  10. Becker EW (2007) Micro-algae as a source of protein. Biotechnol Adv 25:207–210. doi: 10.1016/j.biotechadv.2006.11.002 PubMedCrossRefGoogle Scholar
  11. Becker S (2012) Transport modeling of skin electroporation and the thermal behavior of the stratum corneum. Int J Therm Sci 54:48–61. doi: 10.1016/j.ijthermalsci.2011.10.022 CrossRefGoogle Scholar
  12. Bermudez-Aguirre D, Dunne CP, Barbosa-Canovas GV (2012) Effect of processing parameters on inactivation of Bacillus cereus spores in milk using pulsed electric fields. Int Dairy J 24:13–21. doi: 10.1016/j.idairyj.2011.11.003 CrossRefGoogle Scholar
  13. Biller P, Friedman C, Ross AB (2013) Hydrothermal microwave processing of microalgae as a pre-treatment and extraction technique for bio-fuels and bio-products. Bioresour Technol 136:188–195. doi: 10.1016/j.biortech.2013.02.088 PubMedCrossRefGoogle Scholar
  14. Bluhm H (2006) Examples of pulsed-power generators. Pulsed power systems. Springer, Berlin, pp 203–210Google Scholar
  15. Bluhm H, Sack M (2009) Industrial-scale treatment of biological tissues with pulsed electric fields. Electrotechnologies for extraction from food plants and biomaterials. Springer, New York, pp 237–269CrossRefGoogle Scholar
  16. Boussetta N, Vorobiev E, Deloison V et al (2011) Valorisation of grape pomace by the extraction of phenolic antioxidants: application of high voltage electrical discharges. Food Chem 128:364–370. doi: 10.1016/j.foodchem.2011.03.035 PubMedCrossRefGoogle Scholar
  17. Bouzrara H, Vorobiev E (2000) Beet juice extraction by pressing and pulsed electric fields. Int Sugar J 102:194–200Google Scholar
  18. Bouzrara H, Vorobiev E (2003) Solid–liquid expression of cellular materials enhanced by pulsed electric field. Chem Eng Process 42:249–257. doi: 10.1016/S0255-2701(02)00010-7 CrossRefGoogle Scholar
  19. Buckow R, Ng S, Toepfl S (2013) Pulsed electric field processing of orange juice: a review on microbial, enzymatic, nutritional, and sensory quality and stability. Compr Rev Food Sci Food Saf 12:455–467. doi: 10.1111/1541-4337.12026 CrossRefGoogle Scholar
  20. Buttersack C, Basler W (1991) Hydraulic conductivity of cell-walls in sugar-beet tissue. Plant Sci 76:229–237. doi: 10.1016/0168-9452(91)90145-X CrossRefGoogle Scholar
  21. Chacon-Lee TL, Gonzalez-Marino GE (2010) Microalgae for “Healthy” foods-possibilities and challenges. Compr Rev Food Sci Food Saf 9:655–675. doi: 10.1111/j.1541-4337.2010.00132.x CrossRefGoogle Scholar
  22. Chiarella P, Fazio VM, Signori E (2013) Electroporation in DNA vaccination protocols against cancer. Curr Drug Metab 14:291–299PubMedCrossRefGoogle Scholar
  23. Cholet C, Delsart C, Petrel M et al (2014) Structural and biochemical changes induced by pulsed electric field treatments on Cabernet Sauvignon grape berry skins: impact on cell wall total tannins and polysaccharides. J Agric Food Chem 62:2925–2934. doi: 10.1021/jf404804d PubMedCrossRefGoogle Scholar
  24. Corovic S, Lackovic I, Sustaric P et al (2013) Modeling of electric field distribution in tissues during electroporation. Biomed Eng Online 12:16. doi: 10.1186/1475-925X-12-16 PubMedCentralPubMedCrossRefGoogle Scholar
  25. Čorović S, Mir LM, Miklavčič D (2012) In vivo muscle electroporation threshold determination: realistic numerical models and in vivo experiments. J Membr Biol 245:509–520. doi: 10.1007/s00232-012-9432-8 PubMedCrossRefGoogle Scholar
  26. Coustets M, Al-Karablieh N, Thomsen C, Teissié J (2013) Flow process for electroextraction of total proteins from microalgae. J Membr Biol 246:751–760. doi: 10.1007/s00232-013-9542-y PubMedCrossRefGoogle Scholar
  27. Davalos RV, Mir ILM, Rubinsky B (2005) Tissue ablation with irreversible electroporation. Ann Biomed Eng 33:223–231PubMedCrossRefGoogle Scholar
  28. de Boer K, Moheimani NR, Borowitzka MA, Bahri PA (2012) Extraction and conversion pathways for microalgae to biodiesel: a review focused on energy consumption. J Appl Phycol 24:1681–1698. doi: 10.1007/s10811-012-9835-z CrossRefGoogle Scholar
  29. Delemotte L, Tarek M (2012) Molecular dynamics simulations of lipid membrane electroporation. J Membr Biol 245:531–543. doi: 10.1007/s00232-012-9434-6 PubMedCrossRefGoogle Scholar
  30. Delsart C, Cholet C, Ghidossi R et al (2014) Effects of pulsed electric fields on Cabernet Sauvignon grape berries and on the characteristics of wines. Food Bioprocess Technol 7:424–436. doi: 10.1007/s11947-012-1039-7 CrossRefGoogle Scholar
  31. Denet AR, Vanbever R, Preat V (2004) Skin electroporation for transdermal and topical delivery. Adv Drug Deliv Rev 56:659–674. doi: 10.1016/j.addr.2003.10.027 PubMedCrossRefGoogle Scholar
  32. Dismukes GC, Carrieri D, Bennette N et al (2008) Aquatic phototrophs: efficient alternatives to land-based crops for biofuels. Curr Opin Biotechnol 19:235–240. doi: 10.1016/j.copbio.2008.05.007 PubMedCrossRefGoogle Scholar
  33. Donsi F, Ferrari G, Pataro G (2010) Applications of pulsed electric field treatments for the enhancement of mass transfer from vegetable tissue. Food Eng Rev 2:109–130. doi: 10.1007/s12393-010-9015-3 CrossRefGoogle Scholar
  34. Draaisma RB, Wijffels RH, Slegers PM et al (2013) Food commodities from microalgae. Curr Opin Biotechnol 24:169–177. doi: 10.1016/j.copbio.2012.09.012 PubMedCrossRefGoogle Scholar
  35. Dymek K, Dejmek P, Panarese V et al (2012) Effect of pulsed electric field on the germination of barley seeds. LWT Food Sci Technol 47:161–166. doi: 10.1016/j.lwt.2011.12.019 CrossRefGoogle Scholar
  36. Eing C, Goettel M, Straessner R et al (2013) Pulsed electric field treatment of microalgae-benefits for microalgae biomass processing. IEEE Trans Plasma Sci 41:2901–2907. doi: 10.1109/TPS.2013.2274805 CrossRefGoogle Scholar
  37. El Darra N, Grimi N, Maroun RG et al (2013) Pulsed electric field, ultrasound, and thermal pretreatments for better phenolic extraction during red fermentation. Eur Food Res Technol 236:47–56. doi: 10.1007/s00217-012-1858-9 CrossRefGoogle Scholar
  38. El-Belghiti K, Rabhi Z, Vorobiev E (2005) Kinetic model of sugar diffusion from sugar beet tissue treated by pulsed electric field. J Sci Food Agric 85:213–218. doi: 10.1002/jsfa.1944 CrossRefGoogle Scholar
  39. Ersus S, Barrett DM (2010) Determination of membrane integrity in onion tissues treated by pulsed electric fields: use of microscopic images and ion leakage measurements. Innov Food Sci Emerg Technol 11:598–603. doi: 10.1016/j.ifset.2010.08.001 CrossRefGoogle Scholar
  40. Ersus S, Oztop MH, McCarthy MJ, Barrett DM (2010) Disintegration efficiency of pulsed electric field induced effects on onion (Allium cepa L.) Tissues as a function of pulse protocol and determination of cell integrity by 1H-NMR relaxometry. J Food Sci 75:E444–E452. doi: 10.1111/j.1750-3841.2010.01769.x PubMedCrossRefGoogle Scholar
  41. Eshtiaghi MN, Knorr D (2002) High electric field pulse pretreatment: potential for sugar beet processing. J Food Eng 52:265–272. doi: 10.1016/S0260-8774(01)00114-5 CrossRefGoogle Scholar
  42. Essone Mezeme M, Pucihar G, Pavlin M et al (2012) A numerical analysis of multicellular environment for modeling tissue electroporation. Appl Phys Lett 100:143701–143704. doi: 10.1063/1.3700727 CrossRefGoogle Scholar
  43. European Commission Regulation 258/97 (1997) EUROPA-Food Safety-Biotechnology-Novel Foods: Review of Regulation (EC) 258/97. In: Accessed 30 May 2014
  44. Fincan M, Dejmek P (2002) In situ visualization of the effect of a pulsed electric field on plant tissue. J Food Eng 55:223–230. doi: 10.1016/S0260-8774(02)00079-1 CrossRefGoogle Scholar
  45. Fincan M, DeVito F, Dejmek P (2004) Pulsed electric field treatment for solid–liquid extraction of red beetroot pigment. J Food Eng 64:381–388. doi: 10.1016/j.jfoodeng.2003.11.006 CrossRefGoogle Scholar
  46. Flisar K, Meglic SH, Morelj J et al (2014) Testing a prototype pulse generator for a continuous flow system and its use for E. coli inactivation and microalgae lipid extraction. Bioelectrochemistry. doi: 10.1016/j.bioelechem.2014.03.008 PubMedGoogle Scholar
  47. Frey W, Flickinger B, Berghoefer T et al (2011) Electropermeabilization versus nsPEF-stimulation: pulsed electric fields can stimulate the growth of plants and fungi. European Bioelectromagnetics Association, ISBN 978-88-8286-231-2Google Scholar
  48. Gachovska T, Ngadi M, Raghavan V (2006) Pulsed electric field assisted juice extraction from alfalfa. Can Biosyst Eng 48:33–37Google Scholar
  49. Galindo FG, Vernier PT, Dejmek P et al (2008) Pulsed electric field reduces the permeability of potato cell wall. Bioelectromagnetics 29:296–301. doi: 10.1002/bem.20394 PubMedCrossRefGoogle Scholar
  50. Ganeva V, Galutzov B, Teissie J (2014) Evidence that pulsed electric field treatment enhances the cell wall porosity of yeast cells. Appl Biochem Biotechnol 172:1540–1552. doi: 10.1007/s12010-013-0628-x PubMedCrossRefGoogle Scholar
  51. Garcia PA, Rossmeisl JH, Neal RE et al (2011) A parametric study delineating irreversible electroporation from thermal damage based on a minimally invasive intracranial procedure. Biomed Eng Online 10:34. doi: 10.1186/1475-925X-10-34 PubMedCentralPubMedCrossRefGoogle Scholar
  52. Gehl J (2003) Electroporation: theory and methods, perspectives for drug delivery, gene therapy and research. Acta Physiol Scand 177:437–447. doi: 10.1046/j.1365-201X.2003.01093.x PubMedCrossRefGoogle Scholar
  53. Gerlach D, Alleborn N, Baars A et al (2008) Numerical simulations of pulsed electric fields for food preservation: a review. Innov Food Sci Emerg Technol 9:408–417. doi: 10.1016/j.ifset.2008.02.001 CrossRefGoogle Scholar
  54. Goettel M, Eing C, Gusbeth C et al (2013) Pulsed electric field assisted extraction of intracellular valuables from microalgae. Algal Res 2:401–408. doi: 10.1016/j.algal.2013.07.004 CrossRefGoogle Scholar
  55. Golberg A, Rubinsky B (2010) A statistical model for multidimensional irreversible electroporation cell death in tissue. Biomed Eng Online 9:13. doi: 10.1186/1475-925X-9-13 PubMedCentralPubMedCrossRefGoogle Scholar
  56. Golberg A, Rae CS, Rubinsky B (2012) Listeria monocytogenes cell wall constituents exert a charge effect on electroporation threshold. Biochim Biophys Acta Biomembr 1818:689–694. doi: 10.1016/j.bbamem.2011.11.003 CrossRefGoogle Scholar
  57. Gong Y, Jiang M (2011) Biodiesel production with microalgae as feedstock: from strains to biodiesel. Biotechnol Lett 33:1269–1284. doi: 10.1007/s10529-011-0574-z PubMedCrossRefGoogle Scholar
  58. Góngora-Nieto MM, Sepúlveda DR, Pedrow P et al (2002) Food processing by pulsed electric fields: treatment delivery, inactivation level, and regulatory aspects. LWT Food Sci Technol 35:375–388. doi: 10.1006/fstl.2001.0880 CrossRefGoogle Scholar
  59. Gouveia L, Oliveira AC (2009) Microalgae as a raw material for biofuels production. J Ind Microbiol Biotechnol 36:269–274. doi: 10.1007/s10295-008-0495-6 PubMedCrossRefGoogle Scholar
  60. Grimi N, Lebovka N, Vorobiev E, Vaxelaire J (2009) Compressing behavior and texture evaluation for potatoes pretreated by pulsed electric field. J Texture Stud 40:208–224. doi: 10.1111/j.1745-4603.2009.00177.x CrossRefGoogle Scholar
  61. Grimi N, Vorobiev E, Lebovka N, Vaxelaire J (2010) Solid–liquid expression from denaturated plant tissue: filtration–consolidation behaviour. J Food Eng 96:29–36. doi: 10.1016/j.jfoodeng.2009.06.039 CrossRefGoogle Scholar
  62. Grimi N, Dubois A, Marchal L et al (2014) Selective extraction from microalgae Nannochloropsis sp. using different methods of cell disruption. Bioresour Technol 153:254–259. doi: 10.1016/j.biortech.2013.12.011 PubMedCrossRefGoogle Scholar
  63. Guderjan M, Topfl S, Angersbach A, Knorr D (2005) Impact of pulsed electric field treatment on the recovery and quality of plant oils. J Food Eng 67:281–287. doi: 10.1016/j.jfoodeng.2004.04.029 CrossRefGoogle Scholar
  64. Guderjan M, Elez-Martinez P, Knorr D (2007) Application of pulsed electric fields at oil yield and content of functional food ingredients at the production of rapeseed oil. Innov Food Sci Emerg Technol 8:55–62. doi: 10.1016/j.ifset.2006.07.001 CrossRefGoogle Scholar
  65. Gudmundsson M, Hafsteinsson H (2005) Effect of high intensity electric field pulses on solid foods. Emerging technologies for food processing. Elsevier, Amsterdam, pp 141–153CrossRefGoogle Scholar
  66. Guerrero-Beltran JA, Sepulveda DR, Gongora-Nieto MM et al (2010) Milk thermization by pulsed electric fields (PEF) and electrically induced heat. J Food Eng 100:56–60. doi: 10.1016/j.jfoodeng.2010.03.027 CrossRefGoogle Scholar
  67. Gusbeth C, Frey W, Volkmann H et al (2009) Pulsed electric field treatment for bacteria reduction and its impact on hospital wastewater. Chemosphere 75:228–233. doi: 10.1016/j.chemosphere.2008.11.066 PubMedCrossRefGoogle Scholar
  68. Haberl S, Miklavcic D, Sersa G et al (2013) Cell membrane electroporation-part 2: the applications. IEEE Electr Insul Mag 29:29–37. doi: 10.1109/MEI.2013.6410537 CrossRefGoogle Scholar
  69. Halder A, Datta AK, Spanswick RM (2011) Water transport in cellular tissues during thermal processing. AIChE J 57:2574–2588. doi: 10.1002/aic.12465 CrossRefGoogle Scholar
  70. Hannon M, Gimpel J, Tran M et al (2010) Biofuels from algae: challenges and potential. Biofuels 1:763–784PubMedCentralPubMedCrossRefGoogle Scholar
  71. Ho M-C, Casciola M, Levine ZA, Vernier PT (2013a) Molecular dynamics simulations of ion conductance in field-stabilized nanoscale lipid electropores. J Phys Chem B 117:11633–11640. doi: 10.1021/jp401722g PubMedCrossRefGoogle Scholar
  72. Ho M-C, Levine ZA, Vernier PT (2013b) Nanoscale, electric field-driven water bridges in vacuum gaps and lipid bilayers. J Membr Biol 246:793–801. doi: 10.1007/s00232-013-9549-4 PubMedCrossRefGoogle Scholar
  73. Hu N, Yang J, Joo SW et al (2013) Cell electrofusion in microfluidic devices: a review. Sens Actuator B Chem 178:63–85. doi: 10.1016/j.snb.2012.12.034 CrossRefGoogle Scholar
  74. Huang K, Wang J (2009) Designs of pulsed electric fields treatment chambers for liquid foods pasteurization process: a review. J Food Eng 95:227–239. doi: 10.1016/j.jfoodeng.2009.06.013 CrossRefGoogle Scholar
  75. IXL Netherlands B.V. (2014) Nutri-Pulse®: IXL Netherlands B.V. In: The Nutri-Pulse® “cooks” with electric pulses. Accessed 11 Feb 2014
  76. Jaeger H, Balasa A, Knorr D (2008) Food industry applications for pulsed electric fields. Electrotechnologies for extraction from food plants and biomaterials. Springer, New York, pp 181–216Google Scholar
  77. Jaeger H, Meneses N, Knorr D (2009) Impact of PEF treatment inhomogeneity such as electric field distribution, flow characteristics and temperature effects on the inactivation of E. coli and milk alkaline phosphatase. Innov Food Sci Emerg Technol 10:470–480. doi: 10.1016/j.ifset.2009.03.001 CrossRefGoogle Scholar
  78. Jaeger H, Meneses N, Moritz J, Knorr D (2010) Model for the differentiation of temperature and electric field effects during thermal assisted PEF processing. J Food Eng 100:109–118. doi: 10.1016/j.jfoodeng.2010.03.034 CrossRefGoogle Scholar
  79. Jaeger H, Buechner C, Knorr D (2012) PEF enhanced drying of plant based products. Stewart Postharvest Rev 8:1–7. doi: 10.2212/spr.2012.2.1 CrossRefGoogle Scholar
  80. Janositz A, Knorr D (2010) Microscopic visualization of pulsed electric field induced changes on plant cellular level. Innov Food Sci Emerg Technol 11:592–597. doi: 10.1016/j.ifset.2010.07.004 CrossRefGoogle Scholar
  81. Janositz A, Noack A-K, Knorr D (2011) Pulsed electric fields and their impact on the diffusion characteristics of potato slices. LWT Food Sci Technol 44:1939–1945. doi: 10.1016/j.lwt.2011.04.006 CrossRefGoogle Scholar
  82. Jayaram SH (2000) Sterilization of liquid foods by pulsed electric fields. IEEE Electr Insul Mag 16:17–25. doi: 10.1109/57.887601 CrossRefGoogle Scholar
  83. Jemai AB, Vorobiev E (2002) Effect of moderate electric field pulses on the diffusion coefficient of soluble substances from apple slices. Int J Food Sci Technol 37:73–86. doi: 10.1046/j.1365-2621.2002.00516.x CrossRefGoogle Scholar
  84. Junfeng Z, Leping X, Daolun F et al (2013) Study on inactivation of microalgae in ship ballast water by pulsed electric field and heat treatment. In: Xu QJ, Ju YH, Ge HH (eds) Progress in environmental science and engineering, Pts 1-4. Trans Tech Publications Ltd., Stafa-Zurich, pp 3163–3166Google Scholar
  85. Kanduser M, Miklavcic D, Pavlin M (2009) Mechanisms involved in gene electrotransfer using high- and low-voltage pulses: an in vitro study. Bioelectrochemistry 74:265–271. doi: 10.1016/j.bioelechem.2008.09.002 PubMedCrossRefGoogle Scholar
  86. Kiron V, Phromkunthong W, Huntley M et al (2012) Marine microalgae from biorefinery as a potential feed protein source for Atlantic salmon, common carp and whiteleg shrimp. Aquac Nutr 18:521–531. doi: 10.1111/j.1365-2095.2011.00923.x CrossRefGoogle Scholar
  87. Knorr D, Angersbach A (1998) Impact of high-intensity electric field pulses on plant membrane permeabilization. Trends Food Sci Technol 9:185–191. doi: 10.1016/S0924-2244(98)00040-5 CrossRefGoogle Scholar
  88. Knorr D, Froehling A, Jaeger H et al (2011) Emerging technologies in food processing. Annu Rev Food Sci Technol 2:203–235. doi: 10.1146/ PubMedCrossRefGoogle Scholar
  89. Kotnik T, Miklavcic D (2000) Analytical description of transmembrane voltage induced by electric fields on spheroidal cells. Biophys J 79:670–679. doi: 10.1016/S0006-3495(00)76325-9 PubMedCentralPubMedCrossRefGoogle Scholar
  90. Kotnik T, Pucihar G, Miklavcic D (2010) Induced transmembrane voltage and its correlation with electroporation-mediated molecular transport. J Membr Biol 236:3–13. doi: 10.1007/s00232-010-9279-9 PubMedCrossRefGoogle Scholar
  91. Kotnik T, Kramar P, Pucihar G et al (2012) Cell membrane electroporation-part 1: the phenomenon. IEEE Electr Insul Mag 28:14–23. doi: 10.1109/MEI.2012.6268438 CrossRefGoogle Scholar
  92. Krassowska W, Filev PD (2007) Modeling electroporation in a single cell. Biophys J 92:404–417. doi: 10.1529/biophysj.106.094235 PubMedCentralPubMedCrossRefGoogle Scholar
  93. Lam MK, Lee KT, Mohamed AR (2012) Current status and challenges on microalgae-based carbon capture. Int J Greenh Gas Con 10:456–469. doi: 10.1016/j.ijggc.2012.07.010
  94. Lanoiselle JL, Vorobyov EI, Bouvier JM, Piar G (1996) Modeling of solid/liquid expression for cellular materials. AIChE J 42:2057–2068. doi: 10.1002/aic.690420726 CrossRefGoogle Scholar
  95. Lebovka NI, Bazhal MI, Vorobiev E (2000) Simulation and experimental investigation of food material breakage using pulsed electric field treatment. J Food Eng 44:213–223. doi: 10.1016/S0260-8774(00)00029-7 CrossRefGoogle Scholar
  96. Lebovka NI, Bazhal MI, Vorobiev E (2002) Estimation of characteristic damage time of food materials in pulsed-electric fields. J Food Eng 54:337–346. doi: 10.1016/S0260-8774(01)00220-5 CrossRefGoogle Scholar
  97. Lebovka NI, Praporscic I, Vorobiev E (2003) Enhanced expression of juice from soft vegetable tissues by pulsed electric fields: consolidation stages analysis. J Food Eng 59:309–317. doi: 10.1016/S0260-8774(02)00472-7 CrossRefGoogle Scholar
  98. Lebovka NI, Shynkaryk MV, El-Belghiti K et al (2007a) Plasmolysis of sugarbeet: pulsed electric fields and thermal treatment. J Food Eng 80:639–644. doi: 10.1016/j.jfoodeng.2006.06.020 CrossRefGoogle Scholar
  99. Lebovka NI, Shynkaryk NV, Vorobiev E (2007b) Pulsed electric field enhanced drying of potato tissue. J Food Eng 78:606–613. doi: 10.1016/j.jfoodeng.2005.10.032 CrossRefGoogle Scholar
  100. Lebovka N, Vorobiev E, Chemat F (2011) Enhancing extraction processes in the food industry. CRC Press, Boca RatonCrossRefGoogle Scholar
  101. Leong SY, Richter L-K, Knorr D, Oey I (2014) Feasibility of using pulsed electric field processing to inactivate enzymes and reduce the cutting force of carrot (Daucus carota var. Nantes). Innov Food Sci Emerg Technol. doi: 10.1016/j.ifset.2014.04.004 Google Scholar
  102. Leontiadou H, Mark AE, Marrink SJ (2004) Molecular dynamics simulations of hydrophilic pores in lipid bilayers. Biophys J 86:2156–2164PubMedCentralPubMedCrossRefGoogle Scholar
  103. Li J, Lin H (2011) Numerical simulation of molecular uptake via electroporation. Bioelectrochemistry 82:10–21. doi: 10.1016/j.bioelechem.2011.04.006 PubMedCrossRefGoogle Scholar
  104. Li J, Tan W, Yu M, Lin H (2013) The effect of extracellular conductivity on electroporation-mediated molecular delivery. Biochim Biophys Acta. doi: 10.1016/j.bbamem.2012.08.014 Google Scholar
  105. Liu M, Zhang M, Lin S et al (2012) Optimization of extraction parameters for protein from beer waste brewing yeast treated by pulsed electric fields (PEF). Afr J Microbiol Res 6:4739–4746. doi: 10.5897/AJMR12.117 Google Scholar
  106. Liu D, Lebovka NI, Vorobiev E (2013) Impact of electric pulse treatment on selective extraction of intracellular compounds from saccharomyces cerevisiae yeasts. Food Bioprocess Technol 6:576–584. doi: 10.1007/s11947-011-0703-7 CrossRefGoogle Scholar
  107. Lodish HF, Berk A, Kaiser CA et al (2008) Molecular cell biology. W.H. Freeman, New YorkGoogle Scholar
  108. Lopez N, Puertolas E, Condon S et al (2009) Enhancement of the solid–liquid extraction of sucrose from sugar beet (Beta vulgaris) by pulsed electric fields. LWT Food Sci Technol 42:1674–1680. doi: 10.1016/j.lwt.2009.05.015 CrossRefGoogle Scholar
  109. Luengo E, Puértolas AE, López BN et al (2012) Potential applications of pulsed electric fields in wineries. Stewart Postharvest Rev 8:1–6. doi: 10.2212/spr.2012.2.2 CrossRefGoogle Scholar
  110. Maged EAM, Amer Eissa AH (2012) Pulsed electric fields for food processing technology. Struct Funct Food EngGoogle Scholar
  111. Mahnič-Kalamiza S, Miklavčič D, Vorobiev E (2014) Dual-porosity model of solute diffusion in biological tissue modified by electroporation. Biochim Biophys Acta 1838:1950–1966. doi: 10.1016/j.bbamem.2014.03.004 PubMedCrossRefGoogle Scholar
  112. Mahnič-Kalamiza S, Vorobiev E (2014) Dual-porosity model of liquid extraction by pressing from biological tissue modified by electroporation. J Food Eng 137:76–87. doi: 10.1016/j.jfoodeng.2014.03.035
  113. Mali B, Miklavcic D, Campana LG et al (2013) Tumor size and effectiveness of electrochemotherapy. Radiol Oncol. doi: 10.2478/raon-2013-0002 PubMedCentralPubMedGoogle Scholar
  114. Mañas P, Vercet A (2006) Effect of PEF on enzymes and food constituents. In: Raso J, Heinz V (eds) Pulsed electric fields technology for the food industry. Springer, New York, pp 131–151CrossRefGoogle Scholar
  115. Marsellés-Fontanet AR, Elez-Martínez P, Martín-Belloso O (2012) Juice preservation by pulsed electric fields. Stewart Postharvest Rev 8:1–4. doi: 10.2212/spr.2012.2.3 CrossRefGoogle Scholar
  116. Martín-Belloso O, Sobrino-López A (2011) Combination of pulsed electric fields with other preservation techniques. Food Bioprocess Technol 4:954–968. doi: 10.1007/s11947-011-0512-z CrossRefGoogle Scholar
  117. Mathew AG, Cissell R, Liamthong S (2007) Antibiotic resistance in bacteria associated with food animals: a United States perspective of livestock production. Foodborne Pathog Dis 4:115–133. doi: 10.1089/fpd.2006.0066 PubMedCrossRefGoogle Scholar
  118. Mattar J, Turk M, Nonus M et al (2013) Electro-stimulation of Saccharomyces cerevisiae wine yeasts by pulsed electric field and its effect on fermentation performance. arXiv:1304.5681 [physics, q-bio]Google Scholar
  119. McMillan JR, Watson IA, Ali M, Jaafar W (2013) Evaluation and comparison of algal cell disruption methods: microwave, waterbath, blender, ultrasonic and laser treatment. Appl Energy 103:128–134. doi: 10.1016/j.apenergy.2012.09.020 CrossRefGoogle Scholar
  120. Mhemdi H, Bals O, Grimi N, Vorobiev E (2012) Filtration diffusivity and expression behaviour of thermally and electrically pretreated sugar beet tissue and press-cake. Sep Purif Technol 95:118–125. doi: 10.1016/j.seppur.2012.04.031 CrossRefGoogle Scholar
  121. Miklavcic D (2012) Network for development of electroporation-based technologies and treatments: cOST TD1104. J Membr Biol 245:591–598. doi: 10.1007/s00232-012-9493-8 PubMedCentralPubMedCrossRefGoogle Scholar
  122. Miklavcic D, Towhidi L (2010) Numerical study of the electroporation pulse shape effect on molecular uptake of biological cells. Radiol Oncol 44:34–41. doi: 10.2478/v10019-010-0002-3 PubMedCentralPubMedCrossRefGoogle Scholar
  123. Miklavcic D, Sersa G, Brecelj E et al (2012) Electrochemotherapy: technological advancements for efficient electroporation-based treatment of internal tumors. Med Biol Eng Comput 50:1213–1225. doi: 10.1007/s11517-012-0991-8 PubMedCentralPubMedCrossRefGoogle Scholar
  124. Miklavčič D, Mali B, Kos B et al (2014) Electrochemotherapy: from the drawing board into medical practice. Biomed Eng Online 13:29. doi: 10.1186/1475-925X-13-29 PubMedCentralPubMedCrossRefGoogle Scholar
  125. Morales-de la Pena M, Elez-Martinez P, Martin-Belloso O (2011) Food preservation by pulsed electric fields: an engineering perspective. Food Eng Rev 3:94–107. doi: 10.1007/s12393-011-9035-7 CrossRefGoogle Scholar
  126. Morren J, Roodenburg B, de Haan SWH (2003) Electrochemical reactions and electrode corrosion in pulsed electric field (PEF) treatment chambers. Innov Food Sci Emerg Technol 4:285–295. doi: 10.1016/S1466-8564(03)00041-9 CrossRefGoogle Scholar
  127. Mosqueda-Melgar J, Raybaudi-Massilia RM, Martin-Belloso O (2008a) Non-thermal pasteurization of fruit juices by combining high-intensity pulsed electric fields with natural antimicrobials. Innov Food Sci Emerg Technol 9:328–340. doi: 10.1016/j.ifset.2007.09.003 CrossRefGoogle Scholar
  128. Mosqueda-Melgar J, Raybaudi-Massilia RM, Martin-Belloso O (2008b) Combination of high-intensity pulsed electric fields with natural antimicrobials to inactivate pathogenic microorganisms and extend the shelf-life of melon and watermelon juices. Food Microbiol 25:479–491. doi: 10.1016/ PubMedCrossRefGoogle Scholar
  129. Mosqueda-Melgar J, Raybaudi-Massilia RM, Martin-Belloso O (2012) Microbiological shelf life and sensory evaluation of fruit juices treated by high-intensity pulsed electric fields and antimicrobials. Food Bioprod Process 90:205–214. doi: 10.1016/j.fbp.2011.03.004 CrossRefGoogle Scholar
  130. Movahed S, Li D (2012) Electrokinetic transport through the nanopores in cell membrane during electroporation. J Colloid Interface Sci 369:442–452. doi: 10.1016/j.jcis.2011.12.039 PubMedCrossRefGoogle Scholar
  131. Neal RE 2nd, Garcia PA, Robertson JL, Davalos RV (2012) Experimental characterization and numerical modeling of tissue electrical conductivity during pulsed electric fields for irreversible electroporation treatment planning. IEEE Trans Biomed Eng 59:1076–1085. doi: 10.1109/TBME.2012.2182994 PubMedCrossRefGoogle Scholar
  132. Neu WK, Neu JC (2009) Theory of electroporation. In: Cardiac bioelectric therapy: mechanisms and practical implications. Springer, New YorkGoogle Scholar
  133. Odriozola-Serrano I, Aguiló-Aguayo I, Soliva-Fortuny R, Martín-Belloso O (2013) Pulsed electric fields processing effects on quality and health-related constituents of plant-based foods. Trends Food Sci Technol 29:98–107. doi: 10.1016/j.tifs.2011.10.003 CrossRefGoogle Scholar
  134. Olaizola M (2003) Commercial development of microalgal biotechnology: from the test tube to the marketplace. Biomol Eng 20:459–466. doi: 10.1016/S1389-0344(03)00076-5 PubMedCrossRefGoogle Scholar
  135. Pataro G, Ferrari G, Donsi F (2011) Mass transfer enhancement by means of electroporation. In: Markoš J (ed) Mass transfer in chemical engineering processes.
  136. Pavselj N, Miklavcic D (2008) Numerical models of skin electropermeabilization taking into account conductivity changes and the presence of local transport regions. IEEE Trans Plasma Sci 36:1650–1658. doi: 10.1109/TPS.2009.928715 CrossRefGoogle Scholar
  137. Petryk M, Vorobiev E (2013) Numerical and analytical modeling of solid–liquid expression from soft plant materials. AIChE J 59:4762–4771. doi: 10.1002/aic.14213 CrossRefGoogle Scholar
  138. Phoon PY, Galindo FG, Vicente A, Deimek P (2008) Pulsed electric field in combination with vacuum impregnation with trehalose improves the freezing tolerance of spinach leaves. J Food Eng 88:144–148. doi: 10.1016/j.jfoodeng.2007.12.016 CrossRefGoogle Scholar
  139. Polak A, Bonhenry D, Dehez F et al (2013) On the electroporation thresholds of lipid bilayers: molecular dynamics simulation investigations. J Membr Biol 246:843–850. doi: 10.1007/s00232-013-9570-7 PubMedCrossRefGoogle Scholar
  140. Praporscic I, Lebovka N, Vorobiev E, Mietton-Peuchot M (2007) Pulsed electric field enhanced expression and juice quality of white grapes. Sep Purif Technol 52:520–526. doi: 10.1016/j.seppur.2006.06.007 CrossRefGoogle Scholar
  141. Pucihar G, Kotnik T, Miklavcic D, Teissie J (2008) Kinetics of transmembrane transport of small molecules into electropermeabilized cells. Biophys J 95:2837–2848. doi: 10.1529/biophysj.108.135541 PubMedCentralPubMedCrossRefGoogle Scholar
  142. Pucihar G, Krmelj J, Reberšek M et al (2011) Equivalent pulse parameters for electroporation. IEEE Trans Biomed Eng 58:3279–3288. doi: 10.1109/TBME.2011.2167232 PubMedCrossRefGoogle Scholar
  143. Puertolas E, Luengo E, Alvarez I, Raso J (2012) Improving mass transfer to soften tissues by pulsed electric fields: fundamentals and applications. In: Doyle MP, Klaenhammer TR (eds) Annual review of food science and technology, vol 3. Annual Reviews, Palo Alto, pp 263–282Google Scholar
  144. Pulz O, Gross W (2004) Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol 65:635–648. doi: 10.1007/s00253-004-1647-x PubMedCrossRefGoogle Scholar
  145. Qin BL, Pothakamury UR, BarbosaCanovas GV, Swanson BG (1996) Nonthermal pasteurization of liquid foods using high-intensity pulsed electric fields. Crit Rev Food Sci Nutr 36:603–627PubMedCrossRefGoogle Scholar
  146. Raffy S, Lazdunski C, Teissie J (2004) Electroinsertion and activation of the C-terminal domain of colicin A, a voltage gated bacterial toxin, into mammalian cell membranes. Mol Membr Biol 21:237–246. doi: 10.1080/09687680410001711632 PubMedCrossRefGoogle Scholar
  147. Raso J, Heinz V (2010) Pulsed electric fields technology for the food industry: fundamentals and applications. Springer, New YorkGoogle Scholar
  148. Raso J, Alvarez I, Condon S et al (2014a) PEFSchool Homepage. Accessed 25 Feb 2014
  149. Raso J, Miklavčič D, Marjanovič I, Mahnič-Kalamiza S (2014b) COST TD1104 March 2014 Newsletter. In: the official COST TD1104 Website. Accessed 25 Feb 2014
  150. Rauh C, Krauss J, Ertunc O, Delgado A (2010) Numerical simulation of non-thermal food preservation. In: Psihoyios G, Tsitouras C (eds) Numerical analysis and applied mathematics, vol I–III. American Institute Physics, Melville, pp 1692–1695Google Scholar
  151. Rebersek M, Miklavcic D (2010) Concepts of electroporation pulse generation and overview of electric pulse generators for cell and tissue electroporation. Advanced electroporation techniques in biology and medicine. CRC Press, Boca Raton, pp 323–339Google Scholar
  152. Rebersek M, Miklavcic D, Bertacchini C, Sack M (2014) Cell membrane electroporation—part 3: the equipment. IEEE Electr Insul Mag 30:8–18. doi: 10.1109/MEI.2014.6804737 CrossRefGoogle Scholar
  153. Rems L, Ušaj M, Kandušer M et al (2013) Cell electrofusion using nanosecond electric pulses. Sci Rep. doi: 10.1038/srep03382 PubMedCentralPubMedGoogle Scholar
  154. Rieder A, Schwartz T, Schoen-Hoelz K et al (2008) Molecular monitoring of inactivation efficiencies of bacteria during pulsed electric field treatment of clinical wastewater. J Appl Microbiol 105:2035–2045. doi: 10.1111/j.1365-2672.2008.03972.x PubMedCrossRefGoogle Scholar
  155. Rols MP, Teissié J (1990) Electropermeabilization of mammalian cells. Quantitative analysis of the phenomenon. Biophys J 58:1089–1098. doi: 10.1016/S0006-3495(90)82451-6 PubMedCentralPubMedCrossRefGoogle Scholar
  156. Roodenburg B, Morren J, Berg HE, de Haan SWH (2005) Metal release in a stainless steel pulsed electric field (PEF) system: part II. The treatment of orange juice; related to legislation and treatment chamber lifetime. Innov Food Sci Emerg Technol 6:337–345. doi: 10.1016/j.ifset.2005.04.004 CrossRefGoogle Scholar
  157. Sabri N, Pelissier B, Teissié J (1996) Electropermeabilization of intact maize cells induces an oxidative stress. Eur J Biochem 238:737–743PubMedCrossRefGoogle Scholar
  158. Sack M, Schultheiss C, Bluhm H (2005) Triggered Marx generators for the industrial-scale electroporation of sugar beets. IEEE Trans Ind Appl 41:707–714. doi: 10.1109/TIA.2005.847307 CrossRefGoogle Scholar
  159. Sack M, Sigler J, Eing C et al (2010a) Operation of an electroporation device for grape mash. IEEE Trans Plasma Sci 38:1928–1934. doi: 10.1109/TPS.2010.2050073 CrossRefGoogle Scholar
  160. Sack M, Sigler J, Frenzel S et al (2010b) Research on industrial-scale electroporation devices fostering the extraction of substances from biological tissue. Food Eng Rev 2:147–156. doi: 10.1007/s12393-010-9017-1 CrossRefGoogle Scholar
  161. Sagarzazu N, Cebrián G, Pagán R et al (2013) Emergence of pulsed electric fields resistance in Salmonella enterica serovar Typhimurium SL1344. Int J Food Microbiol 166:219–225. doi: 10.1016/j.ijfoodmicro.2013.07.001 PubMedCrossRefGoogle Scholar
  162. Salengke S, Sastry SK, Zhang HQ (2012) Pulsed electric field technology: modeling of electric field and temperature distributions within continuous flow PEF treatment chamber. Int Food Res J 19:1137–1144Google Scholar
  163. Satkauskas S, Bureau MF, Puc M et al (2002) Mechanisms of in vivo DNA electrotransfer: respective contributions of cell electropermeabilization and DNA electrophoresis. Mol Ther 5:133–140. doi: 10.1006/mthe.2002.0526 PubMedCrossRefGoogle Scholar
  164. Saulis G (2010) Electroporation of cell membranes: the fundamental effects of pulsed electric fields in food processing. Food Eng Rev 2:52–73. doi: 10.1007/s12393-010-9023-3 CrossRefGoogle Scholar
  165. Saw NMMT, Riedel H, Cai Z et al (2012) Stimulation of anthocyanin synthesis in grape (Vitis vinifera) cell cultures by pulsed electric fields and ethephon. Plant Cell Tissue Organ Cult 108:47–54. doi: 10.1007/s11240-011-0010-z CrossRefGoogle Scholar
  166. Sel D, Cukjati D, Batiuskaite D et al (2005) Sequential finite element model of tissue electropermeabilization. IEEE Trans Biomed Eng 52:816–827. doi: 10.1109/TBME.2005.845212 PubMedCrossRefGoogle Scholar
  167. Shayanfar S, Chauhan OP, Toepfl S, Heinz V (2013) The interaction of pulsed electric fields and texturizing: antifreezing agents in quality retention of defrosted potato strips. Int J Food Sci Technol 48:1289–1295. doi: 10.1111/ijfs.12089 CrossRefGoogle Scholar
  168. Shin JK, Lee SJ, Cho HY et al (2010) Germination and subsequent inactivation of Bacillus subtilis spores by pulsed electric field treatment. J Food Process Preserv 34:43–54. doi: 10.1111/j.1745-4549.2008.00321.x CrossRefGoogle Scholar
  169. Shynkaryk MV, Lebovka NI, Vorobiev E (2008) Pulsed electric fields and temperature effects on drying and rehydration of red beetroots. Dry Technol 26:695–704. doi: 10.1080/07373930802046260 CrossRefGoogle Scholar
  170. Skrede A, Mydland LT, Ahlstrom O et al (2011) Evaluation of microalgae as sources of digestible nutrients for monogastric animals. J Anim Feed Sci 20:131–142Google Scholar
  171. Sobrino-Lopez A, Martin-Belloso O (2010) Review: potential of high-intensity pulsed electric field technology for milk processing. Food Eng Rev 2:17–27. doi: 10.1007/s12393-009-9011-7 CrossRefGoogle Scholar
  172. Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96. doi: 10.1263/jbb.101.87 PubMedCrossRefGoogle Scholar
  173. Stirke A, Zimkus A, Ramanaviciene A et al (2014) Electric field-induced effects on yeast cell wall permeabilization. Bioelectromagnetics 35:136–144. doi: 10.1002/bem.21824 PubMedCrossRefGoogle Scholar
  174. Straessner R, Eing C, Goettel M et al (2013) Monitoring of pulsed electric field-induced abiotic stress on microalgae by chlorophyll fluorescence diagnostic. IEEE Trans Plasma Sci 41:2951–2958. doi: 10.1109/TPS.2013.2281082 CrossRefGoogle Scholar
  175. Toepfl S (2006) Pulsed electric fields (PEF) for permeabilization of cell membranes in food-and bioprocessing: applications, process and equipment design and cost analysis. University of Technology, BerlinGoogle Scholar
  176. Toepfl S (2011) Pulsed electric field food treatment: scale up from lab to industrial scale. Proc Food Sci 1:776–779. doi: 10.1016/j.profoo.2011.09.117 CrossRefGoogle Scholar
  177. Toepfl S (2012) Pulsed electric field food processing–industrial equipment design and commercial applications. Stewart Postharvest Rev 8:1–7. doi: 10.2212/spr.2012.2.4 CrossRefGoogle Scholar
  178. Toepfl S, Heinz V (2008) The stability of uncooked cured products use of pulsed electric fields to accelerate mass transport operations in uncooked cured products. Fleischwirtschaft 88:127–130Google Scholar
  179. Toepfl S, Heinz V, Knorr D (2005) Overview of pulsed electric field processing for food. In: Sun D-W (ed) Emerging technologies for food processing. Academic Press, London, pp 69–97CrossRefGoogle Scholar
  180. Toepfl S, Heinz V, Knorr D (2006) Applications of pulsed electric fields technology for the food industry. In: Raso J, Heinz V (eds) Pulsed electric fields technology for the food industry. Springer, New York, pp 197–221CrossRefGoogle Scholar
  181. Toepfl S, Heinz V, Knorr D (2007) History of pulsed electric field treatment. In: Lelieveld HLM, Notermans S, de Haan SWH (eds) Food Preservation by pulsed electric fields. Woodhead Publishing, Cambridge, pp 9–39Google Scholar
  182. Turk MF, Billaud C, Vorobiev E, Baron A (2012a) Continuous pulsed electric field treatment of French cider apple and juice expression on the pilot scale belt press. Innov Food Sci Emerg Technol 14:61–69. doi: 10.1016/j.ifset.2012.02.001 CrossRefGoogle Scholar
  183. Turk MF, Vorobiev E, Baron A (2012b) Improving apple juice expression and quality by pulsed electric field on an industrial scale. LWT Food Sci Technol 49:245–250. doi: 10.1016/j.lwt.2012.07.024 CrossRefGoogle Scholar
  184. Usaj M, Trontelj K, Miklavcic D, Kanduser M (2010) Cell–cell electrofusion: optimization of electric field amplitude and hypotonic treatment for mouse melanoma (B16-F1) and Chinese Hamster ovary (CHO) cells. J Membr Biol 236:107–116. doi: 10.1007/s00232-010-9272-3 PubMedCrossRefGoogle Scholar
  185. Vanthoor-Koopmans M, Wijffels RH, Barbosa MJ, Eppink MHM (2013) Biorefinery of microalgae for food and fuel. Bioresour Technol 135:142–149. doi: 10.1016/j.biortech.2012.10.135 PubMedCrossRefGoogle Scholar
  186. Velickova E, Tylewicz U, Dalla Rosa M et al (2013) Effect of vacuum infused cryoprotectants on the freezing tolerance of strawberry tissues. LWT Food Sci Technol 52:146–150. doi: 10.1016/j.lwt.2011.09.013 CrossRefGoogle Scholar
  187. Vidal O (2014) First pulsed electric field (PEF) application at industrial scale in beet sugar industry. Sugar Ind 139:37–39Google Scholar
  188. Vidal OP, Vorobiev E (2011) Procédé et installation de traitement des tissus végétaux pour en extraire une substance végétale, notamment un jus. International Patent No 138248Google Scholar
  189. Vorobiev E, Lebovka N (2008) Pulsed-electric-fields-induced effects in plant tissues: fundamental aspects and perspectives of applications. Electrotechnologies for extraction from food plants and biomaterials. Springer, New York, pp 39–81Google Scholar
  190. Vorobiev E, Lebovka N (2010) Enhanced extraction from solid foods and biosuspensions by pulsed electrical energy. Food Eng Rev 2:95–108. doi: 10.1007/s12393-010-9021-5 CrossRefGoogle Scholar
  191. Wesierska E, Trziszka T (2007) Evaluation of the use of pulsed electrical field as a factor with antimicrobial activity. J Food Eng 78:1320–1325. doi: 10.1016/j.foodeng.2006.01.002 CrossRefGoogle Scholar
  192. Widjaja A, Chien C-C, Ju Y-H (2009) Study of increasing lipid production from fresh water microalgae Chlorella vulgaris. J Taiwan Inst Chem Eng 40:13–20. doi: 10.1016/j.jtice.2008.07.007 CrossRefGoogle Scholar
  193. Wijffels RH, Barbosa MJ, Eppink MHM (2010) Microalgae for the production of bulk chemicals and biofuels. Biofuels Bioprod Biorefining 4:287–295. doi: 10.1002/bbb.215 CrossRefGoogle Scholar
  194. Wiyarno B, Yunus RM, Mel M (2011) Extraction of algae oil from Nannocloropsis sp.: a study of soxhlet and ultrasonic-assisted extractions. J Appl Sci 11:3607–3612. doi: 10.3923/jas.2011.3607.3612 CrossRefGoogle Scholar
  195. Yarmush ML, Golberg A, Serša G et al (2014) Electroporation-based technologies for medicine: principles, applications, and challenges. Annu Rev Biomed Eng 16:295–320. doi: 10.1146/annurev-bioeng-071813-104622 PubMedCrossRefGoogle Scholar
  196. Ye H, Huang L-L, Chen S-D, Zhong J-J (2004) Pulsed electric field stimulates plant secondary metabolism in suspension cultures of Taxus chinensis. Biotechnol Bioeng 88:788–795. doi: 10.1002/bit.20266 PubMedCrossRefGoogle Scholar
  197. Yeom HW, McCann KT, Streaker CB, Zhang QH (2002) Pulsed electric field processing of high acid liquid foods: a review. Adv Food Nutr Res 44:1–32PubMedCrossRefGoogle Scholar
  198. Zbinden MDA, Sturm BSM, Nord RD et al (2013) Pulsed electric field (PEF) as an intensification pretreatment for greener solvent lipid extraction from microalgae. Biotechnol Bioeng 110:1605–1615. doi: 10.1002/bit.24829 PubMedCrossRefGoogle Scholar
  199. Zorec B, Préat V, Miklavčič D, Pavšelj N (2013) Active enhancement methods for intra- and transdermal drug delivery: a review. Slov Med J. doi: 10.6016/1889 Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Samo Mahnič-Kalamiza
    • 1
    • 2
  • Eugène Vorobiev
    • 1
  • Damijan Miklavčič
    • 2
    Email author
  1. 1.Centre de Recherches de RoyallieuUniversity of Technology of CompiègneCompiègne CedexFrance
  2. 2.Laboratory of Biocybernetics, Faculty of Electrical EngineeringUniversity of LjubljanaLjubljanaSlovenia

Personalised recommendations