The Journal of Membrane Biology

, Volume 248, Issue 3, pp 443–453 | Cite as

Dynamics of the Plasma Membrane Proton Pump



Proton transfer over distances longer than that of a hydrogen bond often requires water molecules and protein motions. Following transfer of the proton from the donor to the acceptor, the change in the charge distribution may alter the dynamics of protein and water. To begin to understand how protonation dynamics couple to protein and water dynamics, here we explore how changes in the protonation state affect water and protein dynamics in the AHA2 proton pump. We find that the protonation state of the proton donor and acceptor groups largely affects the dynamics of internal waters and of specific hydrogen bonds, and the orientation of transmembrane helical segments that couple remote regions of the protein. The primary proton donor/acceptor group D684, can interact with water molecules from the cytoplasmic bulk and/or other protein groups.


Proton transfer Protein dynamics Dynamics of internal waters Hydrogen-bonding AHA2 proton pump 


  1. Bondar A-N, White SH (2012) Hydrogen bond dynamics in membrane protein function. Biochim Biophys Acta 2012:942–950CrossRefGoogle Scholar
  2. Bondar A-N, Fischer S, Smith JC, Elstner M, Suhai S (2004) Key role of electrostatic interactions in bacteriorhodopsin proton transfer. J Am Chem Soc 126:14668–14677CrossRefPubMedGoogle Scholar
  3. Bondar A-N, Smith JC, Fischer S (2006) Structural and energetic determinants of primary proton transfer in bacteriorhodopsin. Photochem Photobiol Sci 5:547–552CrossRefPubMedGoogle Scholar
  4. Bondar A-N, Baudry J, Suhai S, Fischer S, Smith JC (2008) Key role of active-site water molecules in bacteriorhodopsin proton-transfer reactions. J Phys Chem B 112:14729–14741CrossRefPubMedGoogle Scholar
  5. Borders CLJ, Broadwater JA, Bekeny PA, Salmon JE, Lee AS, Eldridge AM, Pett VB (1994) A structural role for arginine in proteins: Multiple hydrogen bonds to backbone carbonyl oxygens. Prot Sci 3:541–548CrossRefGoogle Scholar
  6. Braun-Sand S, Sharma PK, Chu ZT, Pisliakov AV, Warshel A (2008) The energetics of the primary proton transfer in bacteriorhodopsin revisited: it is a sequential light-induced charge separation after all. Biochim Biophys Acta 1777:441–452PubMedCentralCrossRefPubMedGoogle Scholar
  7. Brooks BR et al (2009) CHARMM: the biomolecular simulation program. J Comput Chem 30:1545–1614PubMedCentralCrossRefPubMedGoogle Scholar
  8. Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M (1983) CHARMM: a program for macromolecular energy, minimization, and dynamics. J Comput Chem 4:187–217CrossRefGoogle Scholar
  9. Bublitz M, Poulsen H, Morth JP, Nissen P (2010) In and out of the cation pumps: P-type ATPase structure revisited. Curr Opin Struct Biol 20:431–439CrossRefPubMedGoogle Scholar
  10. Buch-Pedersen MJ, Palmgren MG (2003) Conserved Asp684 in tramsmebrane segment M6 of the plant plasma membrane P-type proton pump AHA2 is a molecular determinant of proton translocation. J Biol Chem 278:17845–17851CrossRefPubMedGoogle Scholar
  11. Buch-Pedersen MJ, Venema K, Serrano R, Palmgren MG (2000) Abolishment of proton pumping and and accumulation in the E1P conformational state of a plant plasma membrane H+ATPase by substitution of a conserved aspartyl residue in transmembrane segment 6. J Biol Chem 275:39167–39173Google Scholar
  12. Buch-Pedersen MJ, Pedersen BP, Veierskov B, Nissen P, Palmgren MG (2009) Protons and how they are transported by proton pumps. Pflug Arch-Eur J Physiol 457:573–579CrossRefGoogle Scholar
  13. Bukrinsky JT, Buch-Pedersen MJ, Larsen S, Palmgren MG (2001) A putative binding site of plasma membrane H+ -ATPase identified through homology modeling. FEBS Lett 494:6–10Google Scholar
  14. Cao Z, Bowie JU (2012) Shifting hydrogen bonds may produce flexible transmembrane helices. Proc Natl Acad Sci USA 109:8121–8126PubMedCentralCrossRefPubMedGoogle Scholar
  15. Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N × log(N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092CrossRefGoogle Scholar
  16. del Val C, White SH, Bondar A-N (2012) Ser/Thr motifs in transmembrane proteins: conservation patterns and effects on local protein structure and dynamics. J Membr Biol 245:717–730PubMedCentralCrossRefPubMedGoogle Scholar
  17. del Val C, Bondar L, Bondar A-N (2014) Coupling between inter-helical hydrogen bonding and water dynamics in a proton transporter. J Struct Biol 2014(186):95–111CrossRefGoogle Scholar
  18. Ekberg K, Wielandt AG, Buch-Pedersen MJ, Palmgren MG (2013) A conserved asparagine in a P-type proton pump is required for efficient gating of protons. J Biol Chem 288:9610–9618PubMedCentralCrossRefPubMedGoogle Scholar
  19. Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) A smooth particle mesh Ewald method. J Chem Phys 103:8577–8593CrossRefGoogle Scholar
  20. Fagan MJ, Saier MH Jr (1994) P-type ATPases of eukaryotes and bacteria: sequence analysis and construction of phylogenetic trees. J Mol Evol 38:57–99CrossRefPubMedGoogle Scholar
  21. Feller SE, MacKerell AD Jr (1995) Constant pressure molecular dynamics simulation: the Langevin piston method. J Chem Phys 103:4613–4621CrossRefGoogle Scholar
  22. Foloppe N, MacKerell AD Jr (2000) All-atom empirical force field for nucleic acids: 1) Parameter optimization based on small molecule and consdensed phase macromolecular target data. J Comput Chem 21:86–104CrossRefGoogle Scholar
  23. Fraysse ÅS, Møller ALB, Poulsen LR, Wollenweber B, Buch-Pedersen MJ, Palmgren MG (2005) A systematic mutagenesis study of Ile-282 in transmembrane segment M4 of the plasma membrane H+-ATPase J Biol Chem 280:21785-21790Google Scholar
  24. Gray TM, Matthews BW (1984) Intrahelical hydrogen bonding of serine, threonine and cysteine residues within a-helices and its relevance to membrane-bound proteins. J Mol Biol 175:75–81CrossRefPubMedGoogle Scholar
  25. Grubmüller H, Heller H, Windermuth A, Schulten K (1991) Generalized Verlet algorithm for efficient molecular dynamics simulations with long-range interactions. Mol Simul 6:121–142CrossRefGoogle Scholar
  26. Humphrey W, Dalke W, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38CrossRefPubMedGoogle Scholar
  27. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935CrossRefGoogle Scholar
  28. Kale L et al (1999) NAMD2: greater scalability for parallel molecular dynamics. J Comput Chem 151:283–312Google Scholar
  29. Klauda JB et al (2010) Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. J Phys Chem B 114:7830–7843PubMedCentralCrossRefPubMedGoogle Scholar
  30. Kühlbrandt W (2004) Biology, structure and mechanism of P-type ATPases. Nature Rev Mol Cell Biol 5:282–295CrossRefGoogle Scholar
  31. Kühlbrandt W, Zeelen J, Dietrich J (2002) Structure, mechanism and regulation of the Neurospora plasma membrane H+ -ATPase. Science 297:1692–1696Google Scholar
  32. Larkin MA et al (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948CrossRefPubMedGoogle Scholar
  33. Li H, Robertson AD, Jensen JH (2005) Very fast empirical prediction and interpretation of protein pKa values. Proteins 61:704–721CrossRefPubMedGoogle Scholar
  34. Li J, Shaikh SA, Enkavi G, Wen P-C, Huang Z, Tajkhorshid E (2013) Transient formation of water-conducting states in membrane transporters. Proc Natl Acad Sci USA 110:7696–7701PubMedCentralCrossRefPubMedGoogle Scholar
  35. MacKerell AD Jr, Banavali N (2000) All-atom empirical force field for nucleic acids: 2) Application to molecular dynamics simulations of DNA and RNA in solution. J Comput Chem 21:105–120CrossRefGoogle Scholar
  36. MacKerell AD Jr, Feig M (2004) Brooks CL III Extending the treatment of backbone energetics in protein force fields: limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations. J Comput Chem 25:1400–1415Google Scholar
  37. MacKerell AD Jr et al (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102:3586–3616Google Scholar
  38. Martyna GJ, Tobias DJ, Klein ML (1994) Constant-pressure molecular-dynamics algorithms. J Chem Phys 101:4177–4189CrossRefGoogle Scholar
  39. Morsomme P, Slayman CW, Goffeau A (2000) Mutagenic study of the structure, function and biogenesis of the yeast plasma membrane H+-ATPase. Biochim Biophys Acta 1469:133–157Google Scholar
  40. Morth JP, Pedersen BP, Buch-Pedersen MJ, Andersen JP, Vilsen B, Palmgren MG, Nissen P (2011) A structural overview of the plasma membrane Na+, K+-ATP-ase and H+-ATPase ion pumps. Nat Rev Mol Cell Biol 12:60–70CrossRefPubMedGoogle Scholar
  41. Olsson MHM, Sondergaard CR, Rostowski M, Jensen JH (2011) PROPKA3: consistent treatment of internal and surface residues in empirical pKa predictions. J Chem Theory Comput 7:525–537CrossRefGoogle Scholar
  42. Palmgren MG, Nissen P (2011) P-type ATPases. Annu Rev Biophys 40:243–266CrossRefPubMedGoogle Scholar
  43. Pedersen BP, Buch-Pedersen MJ, Morth JB, Palmgren MG, Nissen P (2007) Crystal structure of the plasma membrane proton pump. Nature 450:1111–1114CrossRefPubMedGoogle Scholar
  44. Phillips JC et al (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26:1781–1802PubMedCentralCrossRefPubMedGoogle Scholar
  45. Presta LG, Rose GD (1988) Helix signals in proteins. Science 240:1632–1641CrossRefPubMedGoogle Scholar
  46. Richardson JS, Richardson DC (1988) Amino acid preferences for specific locations at the end of helices. Science 240:1648–1652CrossRefPubMedGoogle Scholar
  47. Ryckaert J-P, Ciccotti G, Berendsen HJC (1977) Numerical integration of the Cartesian equations of motion of a system with constraints Molecular dynamics of n-alkanes. J Comput Phys 23:327–341CrossRefGoogle Scholar
  48. Schubert ML, Peura DA (2008) Control of gastric acid secretion in health and disease. Rev Basic Clin Gastroeneterol 134:1842–1860Google Scholar
  49. Sondergaard CR, Olsson MHM, Rostowski M, Jensen JH (2011) Improved treatment of ligands and coupling effects in empirical calculation and rationalization of pKa values. J Chem Theor Comput 7:2284–2295CrossRefGoogle Scholar
  50. Tuckermann M, Berne BJ (1992) Reversible multiple time scale molecular dynamics. J Chem Phys 97:1990–2001CrossRefGoogle Scholar
  51. White SH, Wimley WC (1999) Membrane protein folding and stability: physical principles. Annu Rev Biomol Struct 28:319–365CrossRefGoogle Scholar
  52. Yatime L et al (2009) P-type ATPases as drug targets: tools for medicine and science. Biochim Biophys Acta 1787:207–220Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Theoretical Molecular Biophysics, Department of PhysicsFreie Universitaet BerlinBerlinGermany

Personalised recommendations