The Journal of Membrane Biology

, Volume 248, Issue 3, pp 371–381 | Cite as

Influence of Pathogenic Mutations on the Energetics of Translocon-Mediated Bilayer Integration of Transmembrane Helices

  • Jonathan P. Schlebach
  • Charles R. Sanders


Aberrant protein folding and assembly contribute to a number of diseases, and efforts to rationalize how pathogenic mutations cause this phenomenon represent an important imperative in biochemical research. However, for α-helical membrane proteins, this task is complicated by the fact that membrane proteins require intricate machinery to achieve structural and functional maturity under cellular conditions. In this work, we utilized the ΔG predictor algorithm ( to survey 470 known pathogenic mutations occurring in five misfolding-prone α-helical membrane proteins for their predicted effects on the translocon-mediated membrane integration of transmembrane helices, a critical step in biosynthesis and folding of nascent membrane proteins. The results suggest that about 10 % of these mutations are likely to have adverse effects on the topogenesis of nascent membrane proteins. These results suggest that the misfolding of a modest but nonetheless significant subset of pathogenic variants may begin at the translocon. Potential implications for therapeutic design and personalized medicine are discussed.


Misfolding disease Rhodopsin Peripheral myelin protein 22 Cystic fibrosis transmembrane regulator Vasopressin V2 receptor KCNQ1 



This work was supported by US NIH Grants RO1 DC007416, RO1 HL122010, and U54 GM094608. JPS was supported by US NIH F32 GM110929.


  1. Adamian L, Liang J (2002) Interhelical hydrogen bonds and spatial motifs in membrane proteins: polar clamps and serine zippers. Proteins 47:209–218CrossRefPubMedGoogle Scholar
  2. Balch WE, Morimoto RI, Dillin A, Kelly JW (2008) Adapting proteostasis for disease intervention. Science 319:916–919CrossRefPubMedGoogle Scholar
  3. Buck TM, Skach WR (2005) Differential stability of biogenesis intermediates reveals a common pathway for aquaporin-1 topological maturation. J Biol Chem 280:261–269CrossRefPubMedGoogle Scholar
  4. Cestèle S, Schiavon E, Rusconi R, Franceschetti S, Mantegazza M (2013) Nonfunctional NaV1.1 familial hemiplegic migraine mutant transformed into gain of function by partial rescue of folding defects. Proc Natl Acad Sci USA 110:17546–17551PubMedCentralCrossRefPubMedGoogle Scholar
  5. Denks K, Vogt A, Sachelaru I, Petriman NA, Kudva R, Koch HG (2014) The Sec translocon mediated protein transport in prokaryotes and eukaryotes. Mol Membr Biol 31:58–84CrossRefPubMedGoogle Scholar
  6. Egea PF, Stroud RM (2010) Lateral opening of a translocon upon entry of protein suggests the mechanism of insertion into membranes. Proc Natl Acad Sci USA 107:17182–17187PubMedCentralCrossRefPubMedGoogle Scholar
  7. Gafvelin G, von Heijne G (1994) Topological “frustration” in multispanning E. coli inner membrane proteins. Cell 77:401–412CrossRefPubMedGoogle Scholar
  8. Garriga P, Liu X, Khorana HG (1996) Structure and function in rhodopsin: correct folding and misfolding in point mutants at and in proximity to the site of the retinitis pigmentosa mutation Leu-125–>Arg in the transmembrane helix C. Proc Natl Acad Sci USA 93:4560–4564PubMedCentralCrossRefPubMedGoogle Scholar
  9. Heinrich SU, Mothes W, Brunner J, Rapoport TA (2000) The Sec61p complex mediates the integration of a membrane protein by allowing lipid partitioning of the transmembrane domain. Cell 102:233–244CrossRefPubMedGoogle Scholar
  10. Hessa T, Kim H, Bihlmaier K, Lundin C, Boekel J, Andersson H, Nilsson I, White SH, von Heijne G (2005) Recognition of transmembrane helices by the endoplasmic reticulum translocon. Nature 433:377–381CrossRefPubMedGoogle Scholar
  11. Hessa T, Meindl-Beinker NM, Bernsel A, Kim H, Sato Y, Lerch-Bader M, Nilsson I, White SH, von Heijne G (2007) Molecular code for transmembrane-helix recognition by the Sec61 translocon. Nature 450:1026–1030CrossRefPubMedGoogle Scholar
  12. Hwa J, Garriga P, Liu X, Khorana HG (1997) Structure and function in rhodopsin: packing of the helices in the transmembrane domain and folding to a tertiary structure in the intradiscal domain are coupled. Proc Natl Acad Sci USA 94:10571–10576PubMedCentralCrossRefPubMedGoogle Scholar
  13. Illergard K, Kauko A, Elofsson A (2011) Why are polar residues within the membrane core evolutionary conserved? Proteins 79:79–91CrossRefPubMedGoogle Scholar
  14. Kanki T, Sakaguchi M, Kitamura A, Sato T, Mihara K, Hamasaki N (2002) The tenth membrane region of band 3 is initially exposed to the luminal side of the endoplasmic reticulum and then integrated into a partially folded band 3 intermediate. Biochemistry 41:13973–13981CrossRefPubMedGoogle Scholar
  15. Kanner EM, Klein IK, Friedlander M, Simon SM (2002) The amino terminus of opsin translocates “posttranslationally” as efficiently as cotranslationally. Biochemistry 41:7707–7715CrossRefPubMedGoogle Scholar
  16. Kauko A, Hedin LE, Thebaud E, Cristobal S, Elofsson A, von Heijne G (2010) Repositioning of transmembrane alpha-helices during membrane protein folding. J Mol Biol 397:190–201CrossRefPubMedGoogle Scholar
  17. Kaushal S, Khorana HG (1994) Structure and function in rhodopsin. 7. Point mutations associated with autosomal dominant retinitis pigmentosa. Biochemistry 33:6121–6128CrossRefPubMedGoogle Scholar
  18. Kelly JW, Balch WE (2006) The integration of cell and chemical biology in protein folding. Nat Chem Biol 2:224–227CrossRefPubMedGoogle Scholar
  19. Lu Y, Turnbull IR, Bragin A, Carveth K, Verkman AS, Skach WR (2000) Reorientation of aquaporin-1 topology during maturation in the endoplasmic reticulum. Mol Biol Cell 11:2973–2985PubMedCentralCrossRefPubMedGoogle Scholar
  20. Meindl-Beinker NM, Lundin C, Nilsson I, White SH, von Heijne G (2006) Asn- and Asp-mediated interactions between transmembrane helices during translocon-mediated membrane protein assembly. EMBO Rep 7:1111–1116PubMedCentralCrossRefPubMedGoogle Scholar
  21. Morello JP, Salahpour A, Laperriere A, Bernier V, Arthus MF, Lonergan M, Petaja-Repo U, Angers S, Morin D, Bichet DG, Bouvier M (2000) Pharmacological chaperones rescue cell-surface expression and function of misfolded V2 vasopressin receptor mutants. J Clin Invest 105:887–895PubMedCentralCrossRefPubMedGoogle Scholar
  22. Moss K, Helm A, Lu Y, Bragin A, Skach WR (1998) Coupled translocation events generate topological heterogeneity at the endoplasmic reticulum membrane. Mol Biol Cell 9:2681–2697PubMedCentralCrossRefPubMedGoogle Scholar
  23. Mu TW, Ong DS, Wang YJ, Balch WE, Yates JR 3rd, Segatori L, Kelly JW (2008) Chemical and biological approaches synergize to ameliorate protein-folding diseases. Cell 134:769–781PubMedCentralCrossRefPubMedGoogle Scholar
  24. Myers JK, Mobley CK, Sanders CR (2008) The peripheral neuropathy-linked Trembler and Trembler-J mutant forms of peripheral myelin protein 22 are folding-destabilized. Biochemistry 47:10620–10629PubMedCentralCrossRefPubMedGoogle Scholar
  25. Öjemalm K, Higuchi T, Jiang Y, Langel Ü, Nilsson I, White SH, Suga H, von Heijne G (2011) Apolar surface area determines the efficiency of translocon-mediated membrane-protein integration into the endoplasmic reticulum. Proc Natl Acad Sci USA 108:E359–E364PubMedCentralCrossRefPubMedGoogle Scholar
  26. Okiyoneda T, Veit G, Dekkers JF, Bagdany M, Soya N, Xu H, Roldan A, Verkman AS, Kurth M, Simon A, Hegedus T, Beekman JM, Lukacs GL (2013) Mechanism-based corrector combination restores DeltaF508-CFTR folding and function. Nat Chem Biol 9:444–454CrossRefPubMedGoogle Scholar
  27. Peng D, Kim JH, Kroncke BM, Law CL, Xia Y, Droege KD, Van Horn WD, Vanoye CG, Sanders CR (2014) Purification and structural study of the voltage-sensor domain of the human KCNQ1 potassium ion channel. Biochemistry 53:2032–2042PubMedCentralCrossRefPubMedGoogle Scholar
  28. Popot JL, Engelman DM (2000) Helical membrane protein folding, stability, and evolution. Annu Rev Biochem 69:881–922CrossRefPubMedGoogle Scholar
  29. Powers ET, Morimoto RI, Dillin A, Kelly JW, Balch WE (2009) Biological and chemical approaches to diseases of proteostasis deficiency. Annu Rev Biochem 78:959–991CrossRefPubMedGoogle Scholar
  30. Rowe SM, Verkman AS (2013) Cystic fibrosis transmembrane regulator correctors and potentiators. Cold Spring Harb Perspect Med 3:a009761PubMedCentralCrossRefPubMedGoogle Scholar
  31. Sanders C, Myers J (2004) Disease-related misassembly of membrane proteins. Annu Rev Biophys Biomol Struct 33:25–51CrossRefPubMedGoogle Scholar
  32. Sanders CR, Ismail-Beigi F, McEnery MW (2001) Mutations of peripheral myelin protein 22 result in defective trafficking through mechanisms which may be common to diseases involving tetraspan membrane proteins. Biochemistry 40:9453–9459CrossRefPubMedGoogle Scholar
  33. Sung CH, Schneider BG, Agarwal N, Papermaster DS, Nathans J (1991) Functional heterogeneity of mutant rhodopsins responsible for autosomal dominant retinitis pigmentosa. Proc Natl Acad Sci USA 88:8840–8844PubMedCentralCrossRefPubMedGoogle Scholar
  34. Van den Berg B, Clemons WM, Collinson I, Modis Y, Hartmann E, Harrison SC, Rapoport TA (2004) X-ray structure of a protein-conducting channel. Nature 427:36–44CrossRefPubMedGoogle Scholar
  35. Van Goor F, Hadida S, Grootenhuis PD, Burton B, Cao D, Neuberger T, Turnbull A, Singh A, Joubran J, Hazlewood A, Zhou J, McCartney J, Arumugam V, Decker C, Yang J, Young C, Olson ER, Wine JJ, Frizzell RA, Ashlock M, Negulescu P (2009) Rescue of CF airway epithelial cell function in vitro by a CFTR potentiator, VX-770. Proc Natl Acad Sci USA 106:18825–18830PubMedCentralCrossRefPubMedGoogle Scholar
  36. Virkki MT, Agrawal N, Edsbacker E, Cristobal S, Elofsson A, Kauko A (2014) Folding of aquaporin 1: multiple evidence that helix 3 can shift out of the membrane core. Protein Sci (in press).Google Scholar
  37. von Heijne G (1992) Membrane protein structure prediction. Hydrophobicity analysis and the positive-inside rule. J Mol Biol 225:487–494CrossRefGoogle Scholar
  38. von Heijne G (2006) Membrane-protein topology. Nat Rev Mol Cell Biol 7:909–918CrossRefGoogle Scholar
  39. Welsh MJ, Smith AE (1993) Molecular mechanisms of CFTR chloride channel dysfunction in cystic fibrosis. Cell 73:1251–1254CrossRefPubMedGoogle Scholar
  40. White SH, von Heijne G (2008) How translocons select transmembrane helices. Annu Rev Biophys 37:23–42CrossRefPubMedGoogle Scholar
  41. Wilson AJ, Quinn KV, Graves FM, Bitner-Glindzicz M, Tinker A (2005) Abnormal KCNQ1 trafficking influences disease pathogenesis in hereditary long QT syndromes (LQT1). Cardiovasc Res 67:476–486CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Biochemistry and Center for Structural BiologyVanderbilt University School of MedicineNashvilleUSA

Personalised recommendations