The Journal of Membrane Biology

, Volume 247, Issue 9–10, pp 897–908 | Cite as

Thermal Fluctuations in Amphipol A8-35 Particles: A Neutron Scattering and Molecular Dynamics Study

  • Moeava Tehei
  • Jason D. Perlmutter
  • Fabrice Giusti
  • Jonathan N. Sachs
  • Giuseppe Zaccai
  • Jean-Luc Popot
Article

Abstract

Amphipols are a class of polymeric surfactants that can stabilize membrane proteins in aqueous solutions as compared to detergents. A8-35, the best-characterized amphipol to date, is composed of a polyacrylate backbone with ~35 % of the carboxylates free, ~25 % grafted with octyl side-chains, and ~40 % with isopropyl ones. In aqueous solutions, A8-35 self-organizes into globular particles with a molecular mass of ~40 kDa. The thermal dynamics of A8-35 particles was measured by neutron scattering in the 10-picosecond, 18-picosecond, and 1-nanosecond time-scales on natural abundance and deuterium-labeled molecules, which permitted to separate backbone and side-chain motions. A parallel analysis was performed on molecular dynamics trajectories (Perlmutter et al., Langmuir 27:10523–10537, 2011). Experimental results and simulations converge, from their respective time-scales, to show that A8-35 particles feature a more fluid hydrophobic core, predominantly containing the octyl chains, and a more rigid solvent-exposed surface, made up predominantly of the hydrophilic polymer backbone. The fluidity of the core is comparable to that of the lipid environment around proteins in the center of biological membranes, as also measured by neutron scattering. The biological activity of proteins depends sensitively on molecular dynamics, which itself is strongly dependent on the immediate macromolecular environment. In this context, the characterization of A8-35 particle dynamics constitutes a step toward understanding the effect of amphipols on membrane protein stability and function.

Keywords

Membrane proteins Surfactants Polymers Molecular dynamics QENS 

Abbreviations

A8-35

An anionic amphipol of average molecular mass ~4.3 kDa, containing ~35 % free carboxylates, ~25 % octyl side-chains, and ~40 % isopropyl ones

APol

Amphipol

CAC

Critical association concentration

DAPol

A8-35 with per-deuterated side-chains

EINS

Elastic incoherent neutron scattering

HAPol

Natural abundance A8-35

INS

Inelastic neutron scattering

MD

Molecular dynamics

Mn

Number-averaged molecular mass

mQ water

Water purified on a A10 Advantage Millipore System

MSD

Mean square displacement

OmpA, OmpX

Respectively outer membrane proteins A and X from Escherichia coli

QENS

Quasi-elastic neutron scattering

RS

Stokes radius

SANS

Small-angle neutron scattering

SEC

Size exclusion chromatography

References

  1. Althoff T, Mills DJ, Popot J-L, Kühlbrandt W (2011) Assembly of electron transport chain components in bovine mitochondrial supercomplex I1III2IV1. EMBO J 30:4652–4664CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bée M (1988) Quasielastic neutron scattering: principles and applications in solid state chemistry. Biology and Materials Science Adam Hilger, PhiladelphiaGoogle Scholar
  3. Bowie JU (2001) Stabilizing membrane proteins. Curr Opin Struct Biol 11:397–402CrossRefPubMedGoogle Scholar
  4. Champeil P, Menguy T, Tribet C, Popot J-L, le Maire M (2000) Interaction of amphipols with the sarcoplasmic reticulum Ca2+-ATPase. J Biol Chem 275:18623–18637CrossRefPubMedGoogle Scholar
  5. Charvolin D, Picard M, Huang L-S, Berry EA, Popot J-L (2014) Solution behavior and crystallization of cytochrome bc 1 in the presence of amphipols. J Membr Biol. doi:10.1007/s00232-014-9694-4
  6. Etzkorn M, Zoonens M, Catoire LJ, Popot J-L, Hiller S (2014) How amphipols embed membrane proteins: global solvent accessibility and interaction with a flexible protein terminus. J Membr Biol. doi:10.1007/s00232-014-9657-9
  7. Feinstein HE, Tifrea D, Sun G, Popot J-L, de la Maza LM, Cocco MJ (2014) Long-term stability of a vaccine formulated with the amphipol-trapped major outer membrane protein from Chlamydia trachomatis. J Membr Biol. doi:10.1007/s00232-014-9693-5
  8. Ferrand M, Dianoux AJ, Petry W, Zaccai G (1993) Thermal motions and function of bacte-rio-rhod-opsin in purple membranes: effects of temperature and hydration studied by neutron scattering. Proc Natl Acad Sci USA 90:9668–9672CrossRefPubMedPubMedCentralGoogle Scholar
  9. Fitter J, Lechner RE, Büldt G, Dencher NA (1996) Internal molecular motions of bacteriorhodopsin: hydration-induced flexibility studied by quasielastic incoherent neutron scattering using oriented purple membranes. Proc Natl Acad Sci USA 193:7600–7605CrossRefGoogle Scholar
  10. Fitter J, Lechner RE, Dencher NA (1997) Picosecond molecular motions in bacteriorhodopsin from neutron scattering. Biophys J 73:2126–2137CrossRefPubMedPubMedCentralGoogle Scholar
  11. Frölich A, Gabel F, Jasnin M, Lehnert U, Oesterhelt D, Stadler AM, Tehei M, Weik M, Wood K, Zaccai G (2009) From shell to cell: neutron scattering studies of biological water dynamics and coupling to activity. Faraday Discuss 41:117–130 discussion 175-207CrossRefGoogle Scholar
  12. Garavito RM, Ferguson-Miller S (2001) Detergents as tools in membrane biochemistry. J Biol Chem 276:32403–32406CrossRefPubMedGoogle Scholar
  13. Giusti F, Popot J-L, Tribet C (2012) Well-defined critical association concentration and rapid adsorption at the air/water interface of a short amphiphilic polymer, amphipol A8-35: a study by Förster resonance energy transfer and dynamic surface tension measurements. Langmuir 28:10372–10380CrossRefPubMedGoogle Scholar
  14. Giusti F, Rieger J, Catoire L, Qian S, Calabrese AN, Watkinson TG, Casiraghi M, Radford SE, Ashcroft AE, Popot J-L (2014) Synthesis, characterization and applications of a per-deuterated amphipol. J Membr Biol. doi:10.1007/s00232-014-9656-x
  15. Gohon Y, Popot J-L (2003) Membrane protein-surfactant complexes. Curr Opin Colloid Interface Sci 8:15–22CrossRefGoogle Scholar
  16. Gohon Y, Pavlov G, Timmins P, Tribet C, Popot J-L, Ebel C (2004) Partial specific volume and solvent interactions of amphipol A8-35. Anal Biochem 334:318–334CrossRefPubMedGoogle Scholar
  17. Gohon Y, Giusti F, Prata C, Charvolin D, Timmins P, Ebel C, Tribet C, Popot J-L (2006) Well-defined nanoparticles formed by hydrophobic assembly of a short and polydisperse random terpolymer, amphipol A8-35. Langmuir 22:1281–1290CrossRefPubMedGoogle Scholar
  18. Gohon Y, Dahmane T, Ruigrok R, Schuck P, Charvolin D, Rappaport F, Timmins P, Engelman DM, Tribet C, Popot J-L, Ebel C (2008) Bacteriorhodopsin/amphipol complexes: structural and functional properties. Biophys J. 94:3523–3537Google Scholar
  19. Huynh KW, Cohen MR, Moiseenkova-Bell VY (2014) Application of amphipols for structu-re-functional analysis of TRP channels. J Membr Biol. doi:10.1007/s00232-014-9684-6
  20. Jasnin M, van Eijck L, Koza MM, Peters J, Laguri C, Lortat-Jacob H, Zaccai G (2010) Dynamics of heparan sulfate explored by neutron scattering. Phys Chem Chem Phys 12:3360–3362CrossRefPubMedGoogle Scholar
  21. Jorgensen WL, Jenson C (1998) Temperature dependence of TIP3P, SPC, and TIP4P water from NPT Monte Carlo simulations: seeking a temperature of maximum density. J Comp Chem 19:1179–1186CrossRefGoogle Scholar
  22. Klauda JB, Kucerka N, Brooks BR, Pastor RW, Nagle JF (2006) Simulation-based methods for interpreting X-ray data from lipid bilayers. Biophys J 90:2796–2807CrossRefPubMedPubMedCentralGoogle Scholar
  23. Kleinschmidt JH, Popot J-L (2014) Folding and stability of integral membrane proteins in amphipols. Arch Biochem Biophys (in press)Google Scholar
  24. König S, Sackmann E (1996) Molecular and collective dynamics of lipid bilayers. Curr Opin Colloid Interface Sci 1:78–82CrossRefGoogle Scholar
  25. Liao M, Cao E, Julius D, Cheng Y (2013) Structure of the TRPV1 ion channel determined by electron cryo-microscopy. Nature 504:107–112CrossRefPubMedPubMedCentralGoogle Scholar
  26. Liao M, Cao E, Julius D, Cheng Y (2014) Single particle electron cryo-microscopy of a mammalian ion channel. Curr Opin Struct Biol 27:1–7CrossRefPubMedGoogle Scholar
  27. MacKerell AD Jr, Bashford D, Bellott M, Dunbrack RL Jr, Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph-McCarthy D, Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S, Ngo T, Nguyen DT, Prodhom B, Reiher WR III, Roux B, Schlenkrich M, Smith JC, Stote R, Straub J, Watanabe M, Wiórkiewicz-Kuczera J, Yin D, Karplus M (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102:3586–3616CrossRefPubMedGoogle Scholar
  28. Marrink SJ, Risselada HJ, Yefimov S, Tieleman DP, de Vries AH (2007) The MARTINI force field: coarse grained model for biomolecular simulations. J Phys Chem B 111:7812–7824CrossRefPubMedGoogle Scholar
  29. Natali F, Castellano C, Pozzi D, Congiu-Castellano A (2005) Dynamic properties of an orient-ed lipid/DNA complex studied by neutron scattering. Biophys J 88:1081–1090CrossRefPubMedGoogle Scholar
  30. Perez J, Zanotti JM, Durand D (1999) Evolution of the internal dynamics of two globular proteins from dry powder to solution. Biophys J 77:454–469CrossRefPubMedPubMedCentralGoogle Scholar
  31. Perlmutter JD, Drasler WJ, Xie W, Gao J, Popot J-L, Sachs JN (2011) All-atom and coarse-grained molecular dynamics simulations of a membrane protein stabilizing polymer. Langmuir 27:10523–10537CrossRefPubMedPubMedCentralGoogle Scholar
  32. Perlmutter JD, Popot J-L, Sachs JN (2014) Molecular dynamics simulations of a membrane protein/amphipol complex. J Membr Biol. doi:10.1007/s00232-014-9690-8
  33. Picard M, Dahmane T, Garrigos M, Gauron C, Giusti F, le Maire M, Popot J-L, Champeil P (2006) Protective and inhibitory effects of various types of amphipols on the Ca2+-ATPase from sarcoplasmic reticulum: a comparative study. Biochemistry 45:1861–1869CrossRefPubMedGoogle Scholar
  34. Planchard N, Point E, Dahmane T, Giusti F, Renault M, Le Bon C, Durand G, Milon A, Guittet E, Zoonens M, Popot J-L, Catoire LJ (2014) The use of amphipols for solution NMR studies of membrane proteins: advantages and limitations as compared to other solubilizing media. J Membr Biol. doi:10.1007/s00232-014-9654-z
  35. Pocanschi C, Popot J-L, Kleinschmidt JH (2013) Folding and stability of outer membrane protein A (OmpA) from Escherichia coli in an amphipathic polymer, amphipol A8-35. Eur Biophys J 42:103–118CrossRefPubMedGoogle Scholar
  36. Polovinkin V, Balandin T, Volkov O, Round E, Borshchevskiy V, Utrobin P, von Stetten D, Royant A, Willbold D, Arzumanyan A, Popot J-L, Gordeliy V (2014) Nanoparticle surface enhanced Raman scattering of bacteriorhodopsin stabilized by amphipol A8-35. J Membr Biol. doi:10.1007/s00232-014-9701-9
  37. Popot JL (2010) Amphipols, nanodiscs, and fluorinated surfactants: three non-conventional approaches to studying membrane proteins in aqueous solutions. Annu Rev Biochem 79:737–775Google Scholar
  38. Popot J-L, Berry EA, Charvolin D, Creuzenet C, Ebel C, Engelman DM, Flötenmeyer M, Giusti F, Gohon Y, Hervé P, Hong Q, Lakey JH, Leonard K, Shuman HA, Timmins P, Warschawski DE, Zito F, Zoonens M, Pucci B, Tribet C (2003) Amphipols: polymeric surfactants for membrane biology research. Cell Mol Life Sci 60:1559–1574CrossRefPubMedGoogle Scholar
  39. Popot J-L, Althoff T, Bagnard D, Banères J-L, Bazzacco P, Billon-Denis E, Catoire LJ, Champeil P, Charvolin D, Cocco MJ, Crémel G, Dahmane T, de la Maza LM, Ebel C, Gabel F, Giusti F, Gohon Y, Goormaghtigh E, Guittet E, Kleinschmidt JH, Kühlbrandt W, Le Bon C, Martinez KL, Picard M, Pucci B, Rappaport F, Sachs JN, Tribet C, van Heijenoort C, Wien F, Zito F, Zoonens M (2011) Amphipols from A to Z. Annu Rev Biophys 40:379–408CrossRefPubMedGoogle Scholar
  40. Rogan PK, Zaccai G (1981) Hydration of purple membrane as a function of relative humidity. J Mol Biol 145:281–284CrossRefPubMedGoogle Scholar
  41. Rosenbusch JP (2001) Stability of membrane proteins: relevance for the selection of appropriate methods for high-resolution structure determinations. J Struct Biol 136:144–157CrossRefPubMedGoogle Scholar
  42. Stansfeld PJ, Jeffreys EE, Sansom MSP (2013) Multiscale simulations reveal conserved patterns of lipid interactions with aquaporins. Structure 21:810–819CrossRefPubMedPubMedCentralGoogle Scholar
  43. Tehei M, Zaccai G (2005) Adaptation to extreme environments: macromolecular dynamics in complex systems. Biochim Biophys Acta 1724:404–410CrossRefPubMedGoogle Scholar
  44. Tehei M, Madern D, Pfister C, Zaccai G (2001) Fast dynamics of halophilic malate dehydrogenase and BSA measured by neutron scattering under various solvent conditions influencing protein stability. Proc Natl Acad Sci USA 98:14356–14361CrossRefPubMedPubMedCentralGoogle Scholar
  45. Tehei M, Madern D, Franzetti B, Zaccai G (2005) Neutron scattering reveals the dynamic basis of protein adaptation to extreme temperature. J Biol Chem 280:40974–40979CrossRefPubMedGoogle Scholar
  46. Trapp M, Gutberlet T, Juranyi F, Unruh T, Demé B, Tehei M, Peters J (2010) Hydration dependent studies of highly aligned multilayer lipid membranes by neutron scattering. J Chem Phys 133:164505CrossRefPubMedGoogle Scholar
  47. Tribet C, Audebert R, Popot J-L (1996) Amphipols: polymers that keep membrane proteins soluble in aqueous solutions. Proc Natl Acad Sci USA 93:15047–15050CrossRefPubMedPubMedCentralGoogle Scholar
  48. Váró G, Lanyi JK (1991) Distortions in the photocycle of bacteriorhodopsin at moderate dehydration. Biophys J 59:313–322CrossRefPubMedPubMedCentralGoogle Scholar
  49. Venkatesan M, Hirtzel CS, Rajagopalan R (1985) The effect of colloidal forces on the self-diffusion coefficients in strongly interacting dispersions. J Chem Phys 82:5685–5695CrossRefGoogle Scholar
  50. Weik M, Patzelt H, Zaccai G, Oesterhelt D (1998) Localization of glycolipids in membranes by in vivo labeling and neutron diffraction. Mol Cell 1:411–419CrossRefPubMedGoogle Scholar
  51. Zaccai G (1987) Structure and hydration of purple membranes in different conditions. J Mol Biol 194:569–572CrossRefPubMedGoogle Scholar
  52. Zaccai G (2011) Neutron scattering perspectives for protein dynamics. J Non-Cryst Solids 357:615–621CrossRefGoogle Scholar
  53. Zaccai G (2013) The ecology of protein dynamics. Curr Phys Chem 3:9–16CrossRefGoogle Scholar
  54. Zoonens M, Popot J-L (2014) Amphipols for each season. J Membr Biol. doi:10.1007/s00232-014-9666-8
  55. Zoonens M, Catoire LJ, Giusti F, Popot J-L (2005) NMR study of a membrane protein in detergent-free aqueous solution. Proc Natl Acad Sci USA 102:8893–8898CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Moeava Tehei
    • 1
  • Jason D. Perlmutter
    • 2
  • Fabrice Giusti
    • 3
  • Jonathan N. Sachs
    • 4
  • Giuseppe Zaccai
    • 5
    • 6
  • Jean-Luc Popot
    • 3
  1. 1.Centre for Medical Radiation Physics and Centre for Medical and Molecular Bioscience, University of WollongongWollongongAustralia
  2. 2.Department of PhysicsBrandeis UniversityWalthamUSA
  3. 3.UMR 7099, Centre National de la Recherche Scientifique/Université Paris-7 Institut de Biologie Physico-Chimique (FRC 550)ParisFrance
  4. 4.Department of Biomedical EngineeringUniversity of MinnesotaMinneapolisUSA
  5. 5.Institut de Biologie Structurale, CEA/CNRS/UJF UMR5075GrenobleFrance
  6. 6.Institut Laue LangevinGrenobleFrance

Personalised recommendations