The Journal of Membrane Biology

, Volume 247, Issue 12, pp 1259–1267 | Cite as

Comparison of Flow Cytometry, Fluorescence Microscopy and Spectrofluorometry for Analysis of Gene Electrotransfer Efficiency

  • Igor Marjanovič
  • Maša Kandušer
  • Damijan Miklavčič
  • Mateja Manček Keber
  • Mojca Pavlin


In this study, we compared three different methods used for quantification of gene electrotransfer efficiency: fluorescence microscopy, flow cytometry and spectrofluorometry. We used CHO and B16 cells in a suspension and plasmid coding for GFP. The aim of this study was to compare and analyse the results obtained by fluorescence microscopy, flow cytometry and spectrofluorometry and in addition to analyse the applicability of spectrofluorometry for quantifying gene electrotransfer on cells in a suspension. Our results show that all the three methods detected similar critical electric field strength, around 0.55 kV/cm for both cell lines. Moreover, results obtained on CHO cells showed that the total fluorescence intensity and percentage of transfection exhibit similar increase in response to increase electric field strength for all the three methods. For B16 cells, there was a good correlation at low electric field strengths, but at high field strengths, flow cytometer results deviated from results obtained by fluorescence microscope and spectrofluorometer. Our study showed that all the three methods detected similar critical electric field strengths and high correlations of results were obtained except for B16 cells at high electric field strengths. The results also demonstrated that flow cytometry measures higher values of percentage transfection compared to microscopy. Furthermore, we have demonstrated that spectrofluorometry can be used as a simple and consistent method to determine gene electrotransfer efficiency on cells in a suspension.


Fluorescence microscopy Flow cytometry Spectrofluorometry Gene electrotransfer 



This work was supported by the Slovenian Research Agency within projects: J2-9770, P2-0249, J4-4324, Young Researcher Project and MRIC UL IP-0510 Infrastructure Programme. Authors IM, MK and DM would like to acknowledge that their work has been performed within the scope of LEA EBAM.

Conflict of interest

The authors declare no competing interests.

Supplementary material

232_2014_9714_MOESM1_ESM.docx (590 kb)
Supplementary material 1 (DOCX 589 kb)


  1. Belehradek M, Domenge C, Luboinski B et al (1993) Electrochemotherapy, a new antitumor treatment. First clinical phase I-II trial. Cancer 72:3694–3700. doi: 10.1002/1097-0142(19931215)72:12<3694:AID-CNCR2820721222>3.0.CO;2-2 CrossRefPubMedGoogle Scholar
  2. Bureau MF, Gehl J, Deleuze V et al (2000) Importance of association between permeabilization and electrophoretic forces for intramuscular DNA electrotransfer. Biochim Biophys Acta 1474:353–359. doi: 10.1016/S0304-4165(00)00028-3 CrossRefPubMedGoogle Scholar
  3. Černe K, Erman A, Veranič P (2013) Analysis of cytotoxicity of melittin on adherent culture of human endothelial cells reveals advantage of fluorescence microscopy over flow cytometry and haemocytometer assay. Protoplasma 2013:1–7. doi: 10.1007/s00709-013-0489-8 Google Scholar
  4. Daud AI, DeConti RC, Andrews S et al (2008) Phase I trial of interleukin-12 plasmid electroporation in patients with metastatic melanoma. J Clin Oncol 26:5896–5903. doi: 10.1200/JCO.2007.15.6794 PubMedCentralCrossRefPubMedGoogle Scholar
  5. Degelau A, Scheper T, Bailey JE, Guske C (1995) Fluorometric measurement of poly-β hydroxybutyrate in Alcaligenes eutrophus by flow cytometry and spectrofluorometry. Appl Microbiol Biotechnol 42:653–657. doi: 10.1007/BF00171939 CrossRefGoogle Scholar
  6. Faurie C, Phez E, Golzio M et al (2004) Effect of electric field vectoriality on electrically mediated gene delivery in mammalian cells. Biochim Biophys Acta 1665:92–100. doi: 10.1016/j.bbamem.2004.06.018 CrossRefPubMedGoogle Scholar
  7. Faurie C, Rebersek M, Golzio M et al (2010) Electro-mediated gene transfer and expression are controlled by the life-time of DNA/membrane complex formation. J Gene Med 12:117–125. doi: 10.1002/jgm.1414 CrossRefPubMedGoogle Scholar
  8. Favard C, Dean D, Rols M (2007) Electrotransfer as a non viral method of gene delivery. Curr Gene Ther 7:67–77CrossRefPubMedGoogle Scholar
  9. Gabrijel M, Repnik U, Kreft M et al (2004) Quantification of cell hybridoma yields with confocal microscopy and flow cytometry. Biochem Biophys Res Commun 314:717–723. doi: 10.1016/j.bbrc.2003.12.154 CrossRefPubMedGoogle Scholar
  10. Gehl J, Sørensen TH, Nielsen K et al (1999) In vivo electroporation of skeletal muscle: threshold, efficacy and relation to electric field distribution. Biochim Biophys Acta 1428:233–240. doi: 10.1016/S0304-4165(99)00094-X CrossRefPubMedGoogle Scholar
  11. Golzio M, Teissié J, Rols M-P (2001) Control by membrane order of voltage-induced permeabilization, loading and gene transfer in mammalian cells. Bioelectrochemistry 53:25–34. doi: 10.1016/S0302-4598(00)00091-X CrossRefPubMedGoogle Scholar
  12. Golzio M, Teissié J, Rols M-P (2002) Direct visualization at the single-cell level of electrically mediated gene delivery. PNAS 99:1292–1297. doi: 10.1073/pnas.022646499 PubMedCentralCrossRefPubMedGoogle Scholar
  13. Golzio M, Rols MP, Teissié J (2004) In vitro and in vivo electric field-mediated permeabilization, gene transfer, and expression. Methods 33:126–135. doi: 10.1016/j.ymeth.2003.11.003 CrossRefPubMedGoogle Scholar
  14. Haberl S, Miklavcic D, Pavlin M (2010) Effect of Mg ions on efficiency of gene electrotransfer and on cell electropermeabilization. Bioelectrochemistry 79:265–271. doi: 10.1016/j.bioelechem.2010.04.001 CrossRefPubMedGoogle Scholar
  15. Haberl S, Kandušer M, Flisar K et al (2013) Effect of different parameters used for in vitro gene electrotransfer on gene expression efficiency, cell viability and visualization of plasmid DNA at the membrane level. J Gene Med 15:169–181. doi: 10.1002/jgm.2706 CrossRefPubMedGoogle Scholar
  16. Heller R, Jaroszeski M, Atkin A et al (1996) In vivo gene electroinjection and expression in rat liver. FEBS Lett 389:225–228. doi: 10.1016/0014-5793(96)00590-X CrossRefPubMedGoogle Scholar
  17. Heller R, Gilbert R, Jaroszeski MJ (1999) Clinical applications of electrochemotherapy. Adv Drug Deliv Rev 35:119–129. doi: 10.1016/S0169-409X(98)00067-2 CrossRefPubMedGoogle Scholar
  18. Hojman P, Zibert J, Gissel H et al (2007) Gene expression profiles in skeletal muscle after gene electrotransfer. BMC Mol Biol 8:56. doi: 10.1186/1471-2199-8-56 PubMedCentralCrossRefPubMedGoogle Scholar
  19. Kanduser M, Miklavcic D, Pavlin M (2009) Mechanisms involved in gene electrotransfer using high- and low-voltage pulses—An in vitro study. Bioelectrochemistry 74:265–271. doi: 10.1016/j.bioelechem.2008.09.002 CrossRefPubMedGoogle Scholar
  20. Mali B, Jarm T, Snoj M et al (2013) Antitumor effectiveness of electrochemotherapy: a systematic review and meta-analysis. Eur J Surg Oncol 39:4–16. doi: 10.1016/j.ejso.2012.08.016 CrossRefPubMedGoogle Scholar
  21. Marjanovic I, Haberl S, Miklavcic D et al (2010) Analysis and comparison of electrical pulse parameters for gene electrotransfer of two different cell lines. J Membr Biol 236:97–105. doi: 10.1007/s00232-010-9282-1 CrossRefPubMedGoogle Scholar
  22. Marty M, Sersa G, Garbay JR et al (2006) Electrochemotherapy—an easy, highly effective and safe treatment of cutaneous and subcutaneous metastases: results of ESOPE (European Standard Operating Procedures of Electrochemotherapy) study. Eur J Cancer 4:3–13. doi: 10.1016/j.ejcsup.2006.08.002 CrossRefGoogle Scholar
  23. Mir LM, Orlowski S, Belehradek J Jr, Paoletti C (1991) Electrochemotherapy potentiation of antitumour effect of bleomycin by local electric pulses. Eur J Cancer 27:68–72. doi: 10.1016/0277-5379(91)90064-K CrossRefPubMedGoogle Scholar
  24. Mir LM, Bureau MF, Gehl J et al (1999) High-efficiency gene transfer into skeletal muscle mediated by electric pulses. Proc Natl Acad Sci USA 96:4262–4267PubMedCentralCrossRefPubMedGoogle Scholar
  25. Neumann E, Rosenheck K (1972) Permeability changes induced by electric impulses in vesicular membranes. J Membr Biol 10:279–290. doi: 10.1007/BF01867861 CrossRefPubMedGoogle Scholar
  26. Neumann E, Schaefer-Ridder M, Wang Y, Hofschneider PH (1982) Gene transfer into mouse lyoma cells by electroporation in high electric fields. EMBO J 1:841–845PubMedCentralPubMedGoogle Scholar
  27. Neumann E, Sowers AE, Jordan CA (1989) Electroporation and Electrofusion in Cell Biology. SpringerGoogle Scholar
  28. Paillusson A, Hirschi N, Vallan C et al (2005) A GFP-based reporter system to monitor nonsense-mediated mRNA decay. Nucleic Acids Res 33:e54. doi: 10.1093/nar/gni052 PubMedCentralCrossRefPubMedGoogle Scholar
  29. Pavlin M, Flisar K, Kanduser M (2010) The role of electrophoresis in gene electrotransfer. J Membr Biol 236:75–79. doi: 10.1007/s00232-010-9276-z CrossRefPubMedGoogle Scholar
  30. Pavlin M, Pucihar G, Kandušer M (2012) The role of electrically stimulated endocytosis in gene electrotransfer. Bioelectrochemistry 83:38–45. doi: 10.1016/j.bioelechem.2011.08.005 CrossRefPubMedGoogle Scholar
  31. Puc M, Kotnik T, Mir LM, Miklavčič D (2003) Quantitative model of small molecules uptake after in vitro cell electropermeabilization. Bioelectrochemistry 60:1–10CrossRefPubMedGoogle Scholar
  32. Rebersek M, Faurie C, Kanduser M et al (2007) Electroporator with automatic change of electric field direction improves gene electrotransfer in vitro. Biomed Eng Online 6:25. doi: 10.1186/1475-925X-6-25 PubMedCentralCrossRefPubMedGoogle Scholar
  33. Rols M-P, Teissié J (1998) Electropermeabilization of mammalian cells to macromolecules: control by pulse duration. Biophys J 75:1415–1423. doi: 10.1016/S0006-3495(98)74060-3 PubMedCentralCrossRefPubMedGoogle Scholar
  34. Rosazza C, Escoffre J-M, Zumbusch A, Rols M-P (2011) The actin cytoskeleton has an active role in the electrotransfer of plasmid DNA in mammalian cells. Mol Ther 19:913–921. doi: 10.1038/mt.2010.303 PubMedCentralCrossRefPubMedGoogle Scholar
  35. Schmid JA, Scholze P, Kudlacek O et al (2001) Oligomerization of the human serotonin transporter and of the rat gaba transporter 1 visualized by fluorescence resonance energy transfer microscopy in living cells. J Biol Chem 276:3805–3810. doi: 10.1074/jbc.M007357200 CrossRefPubMedGoogle Scholar
  36. Spanggaard I, Snoj M, Cavalcanti A et al (2013) Gene electrotransfer of plasmid antiangiogenic metargidin peptide (AMEP) in disseminated melanoma: safety and efficacy results of a phase i first-in-man study. Hum Gene Ther Clin Dev 24:99–107. doi: 10.1089/humc.2012.240 CrossRefPubMedGoogle Scholar
  37. Sukhorukov VL, Djuzenova CS, Frank H et al (1995) Electropermeabilization and fluorescent tracer exchange: the role of whole-cell capacitance. Cytometry 21:230–240. doi: 10.1002/cyto.990210303 CrossRefPubMedGoogle Scholar
  38. Teissié J, Eynard N, Gabriel B, Rols MP (1999) Electropermeabilization of cell membranes. Adv Drug Deliv Rev 35:3–19. doi: 10.1016/S0169-409X(98)00060-X CrossRefPubMedGoogle Scholar
  39. Tesic N, Cemazar M (2013) In vitro targeted gene electrotransfer to endothelial cells with plasmid DNA containing human endothelin-1 promoter. J Membr Biol 246:783–791. doi: 10.1007/s00232-013-9548-5 CrossRefPubMedGoogle Scholar
  40. Torrado M, Iglesias R, Mikhailov A (2008) Detection of protein interactions based on GFP fragment complementation by fluorescence microscopy and spectrofluorometry. Biotechniques 44:70–74. doi: 10.2144/000112685 CrossRefPubMedGoogle Scholar
  41. Usaj M, Torkar D, Kanduser M, Miklavcic D (2011) Cell counting tool parameters optimization approach for electroporation efficiency determination of attached cells in phase contrast images. J Microsc 2011:304–314. doi: 10.1111/j.1365-2818.2010.03441.x Google Scholar
  42. Weaver JC, Chizmadzhev YA (1996) Theory of electroporation: a review. Bioelectrochem Bioenerg 41:135–160. doi: 10.1016/S0302-4598(96)05062-3 CrossRefGoogle Scholar
  43. Wolf H, Rols MP, Boldt E et al (1994) Control by pulse parameters of electric field-mediated gene transfer in mammalian cells. Biophys J 66:524–531. doi: 10.1016/S0006-3495(94)80805-7 PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Igor Marjanovič
    • 1
  • Maša Kandušer
    • 1
  • Damijan Miklavčič
    • 1
  • Mateja Manček Keber
    • 2
    • 3
  • Mojca Pavlin
    • 4
  1. 1.Laboratory of Biocybernetics, Faculty of Electrical EngineeringUniversity of LjubljanaLjubljanaSlovenia
  2. 2.Laboratory for BiotechnologyNational Institute of ChemistryLjubljanaSlovenia
  3. 3.EN-FIST Centre of ExcellenceLjubljanaSlovenia
  4. 4.Group for Nano and Biotechnological Applications, Faculty of Electrical EngineeringUniversity of LjubljanaLjubljanaSlovenia

Personalised recommendations