The Journal of Membrane Biology

, Volume 247, Issue 11, pp 1137–1140 | Cite as

Lipid Converter, A Framework for Lipid Manipulations in Molecular Dynamics Simulations

  • Per Larsson
  • Peter M. KassonEmail author


Construction of lipid membrane and membrane protein systems for molecular dynamics simulations can be a challenging process. In addition, there are few available tools to extend existing studies by repeating simulations using other force fields and lipid compositions. To facilitate this, we introduce Lipid Converter, a modular Python framework for exchanging force fields and lipid composition in coordinate files obtained from simulations. Force fields and lipids are specified by simple text files, making it easy to introduce support for additional force fields and lipids. The converter produces simulation input files that can be used for structural relaxation of the new membranes.


Molecular dynamics Lipid bilayers Membrane composition 



We thank Matt Eckler for beta-testing Lipid Converter.

Conflict of interest

None declared.


This work was supported by an European Union fellowship (Marie Curie) PIOF-GA-2010-275548 to PL and NIH Grant RO1GM098304 to PK.


  1. Berger O, Edholm O, Jähnig F (1997) Molecular dynamics simulations of a fluid bilayer of dipalmitoylphosphatidylcholine at full hydration, constant pressure, and constant temperature. Biophys J 72:2002–2013PubMedCentralCrossRefPubMedGoogle Scholar
  2. Bussi G et al (2007) Canonical sampling through velocity rescaling. J Chem Phys 126:014101CrossRefPubMedGoogle Scholar
  3. Chiu S-W, Pandit SA, Scott HL, Jakobsson E (2009) An improved united atom force field for simulation of mixed lipid bilayers. J Phys Chem B113:2748–2763CrossRefGoogle Scholar
  4. da Silva, A. & Vranken, W. F. BMC Research Notes | Full text | ACPYPE - AnteChamber PYthon Parser interfacE. BMC Res notes (2012)Google Scholar
  5. Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N·log(N) method for Ewald sums in large systems. J. Chem. Phys. 98:10089–10092CrossRefGoogle Scholar
  6. Hess B, Hess B (2008) P-LINCS: a parallel linear constraint solver for molecular simulation. J Chem Theory Comput 4:116–122CrossRefGoogle Scholar
  7. Jämbeck JPM, Lyubartsev AP (2012) Derivation and systematic validation of a refined all-atom force field for phosphatidylcholine lipids. J Phys Chem B116:3164–3179CrossRefGoogle Scholar
  8. Jensen MO et al (2012) Mechanism of voltage gating in potassium channels. Science 336:229–233CrossRefPubMedGoogle Scholar
  9. Jo S, Kim T, Iyer VG, Im W (2008) CHARMM-GUI: a web-based graphical user interface for CHARMM. J Comput Chem 29:1859–1865CrossRefPubMedGoogle Scholar
  10. Klauda JB et al (2010) Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. J Phys Chem B114:7830–7843CrossRefGoogle Scholar
  11. Kukol A (2009) Lipid models for united-atom molecular dynamics simulations of proteins. J Chem Theory Comput 5:615–626CrossRefGoogle Scholar
  12. Kucerka N et al (2005) Structure of fully hydrated fluid phase DMPC and DLPC lipid bilayers using X-ray scattering from oriented multilamellar arrays and from unilamellar vesicles. Biophys J 88:12Google Scholar
  13. Malde AK et al (2011) An automated force field topology builder (ATB) and repository: version 1.0. J Chem Theory Comput 7:4026–4037CrossRefGoogle Scholar
  14. Michaud-Agrawal N, Denning EJ, Woolf TB, Beckstein O (2011) MDAnalysis: a toolkit for the analysis of molecular dynamics simulations. J Comput Chem 32:2319–2327PubMedCentralCrossRefPubMedGoogle Scholar
  15. Oloo EO, Kandt C, O’Mara ML, Tieleman DP (2006) Computer simulations of ABC transporter components. Biochem Cell Biol 84:900–911CrossRefPubMedGoogle Scholar
  16. Pabst G, Rappolt M, Amenitsch H, Laggner P (2000) Structural information from multilamellar liposomes at full hydration: full q-range fitting with high quality x-ray data. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 62:4000–4009PubMedGoogle Scholar
  17. Parrinello M (1981) Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys 52:7182–7190CrossRefGoogle Scholar
  18. Poger D, Van Gunsteren WF, Mark AE (2010) A new force field for simulating phosphatidylcholine bilayers. J Comput Chem 31:1117–1125CrossRefPubMedGoogle Scholar
  19. Pronk S. et al. (2013) GROMACS 4.5: A high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics. doi: 10.1093/bioinformatics/btt055
  20. Roux B, Karplus M (1994) Molecular dynamics simulations of the gramicidin channel. Annu Rev Biophys Biomol Struct. 23:731–761CrossRefPubMedGoogle Scholar
  21. Skjevik ÅA, Madej BD, Walker RC, Teigen K (2012) LIPID11: a modular framework for lipid simulations using amber. J Phys Chem B116:11124–11136CrossRefGoogle Scholar
  22. Ulmschneider JP, Ulmschneider MB (2009) United Atom Lipid Parameters for Combination with the Optimized Potentials for Liquid Simulations All-Atom Force Field—Journal of Chemical Theory and Computation (ACS Publications). J Chem TheoryGoogle Scholar
  23. Vanommeslaeghe K, MacKerell AD Jr (2012) Automation of the CHARMM general force field (CGenFF) I: bond perception and atom typing. J Chem Inf Model 52:3144–3154PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Departments of Molecular Physiology and Biological Physics and Biomedical EngineeringUniversity of VirginiaCharlottesvilleUSA

Personalised recommendations