The Journal of Membrane Biology

, Volume 247, Issue 9–10, pp 971–980 | Cite as

Nanoparticle Surface-Enhanced Raman Scattering of Bacteriorhodopsin Stabilized by Amphipol A8-35

  • V. Polovinkin
  • T. Balandin
  • O. Volkov
  • E. Round
  • V. Borshchevskiy
  • P. Utrobin
  • D. von Stetten
  • A. Royant
  • D. Willbold
  • G. Arzumanyan
  • V. Chupin
  • J.-L. Popot
  • V. GordeliyEmail author


Surface-enhanced Raman spectroscopy (SERS) has developed dramatically since its discovery in the 1970s, because of its power as an analytical tool for selective sensing of molecules adsorbed onto noble metal nanoparticles (NPs) and nanostructures, including at the single-molecule (SM) level. Despite the high importance of membrane proteins (MPs), SERS application to MPs has not really been studied, due to the great handling difficulties resulting from the amphiphilic nature of MPs. The ability of amphipols (APols) to trap MPs and keep them soluble, stable, and functional opens up onto highly interesting applications for SERS studies, possibly at the SM level. This seems to be feasible since single APol-trapped MPs can fit into gaps between noble metal NPs, or in other gap-containing SERS substrates, whereby the enhancement of Raman scattering signal may be sufficient for SM sensitivity. The goal of the present study is to give a proof of concept of SERS with APol-stabilized MPs, using bacteriorhodopsin (BR) as a model. BR trapped by APol A8-35 remains functional even after partial drying at a low humidity. A dried mixture of silver Lee–Meisel colloid NPs and BR/A8-35 complexes give rise to SERS with an average enhancement factor in excess of 102. SERS spectra resemble non-SERS spectra of a dried sample of BR/APol complexes.


Amphipol Membrane protein Bacteriorhodopsin SERS spectroscopy Silver nanoparticles 



We are deeply thankful to Fabrice Giusti (UMR 7099) for synthesizing the amphipols used in the present work. The Raman scattering experiments and UV–Visible absorbance spectroscopy measurements were performed at the ID29S-Cryobench platform of the Grenoble Instruct centre (ISBG; UMS 3518 CNRS-CEA-UJF-EMBL) with support from the European Synchrotron Radiation Facility (ESRF), FRISBI (ANR-10-INSB-05-02) and GRAL (ANR-10-LABX-49-01) within the Grenoble Partnership for Structural Biology (PSB), located next to beamline ID29 of the ESRF. This work was supported by the program “Chaires d’excellence, édition 2008” of the Agence Nationale de la Recherche France, by the Commissariat à l’Énergie Atomique (Institut de Biologie Structurale), by the Helmholtz Gemeinschaft (Research Centre Jülich) Special Topic of Cooperation 5.1 specific agreement, by a Marie Curie grant (Seventh Framework Programme-PEOPLE-2007-1-1-Initial Training Networks, project Structural Biology of Membrane Proteins), by a European Commission Seventh Framework Programme grant for the European Drug Initiative on Channels and Transporters consortium (HEALTH-201924), by the Centre National pour la Recherche Scientifique, by University Paris 7, and by the “Initiative d’Excellence” program of the French State (Grant “DYNAMO,” ANR-11-LABX-0011-01). Vitaly Polovinkin is very grateful to the Fondation Nanosciences for financial support. Part of this work was supported by the German Ministry of Education and Research (PhoNa-Photonic Nanomaterials). We acknowledge support of this work by the Russian Foundation for Basic Research (Research projects 13-04-91320 and 13-04-01700), by the Russian program “5Top100” and by the Ministry of Education and Science of the Russian Federation. This work was supported by ONEXIM, Russia.

Supplementary material

232_2014_9701_MOESM1_ESM.docx (2.7 mb)
Supplementary material 1 (DOCX 2795 kb)


  1. Albrecht MG, Creighton JA (1977) Anomalously intense Raman spectra of pyridine at a silver electrode. J Am Chem Soc 99:5215–5217Google Scholar
  2. Avci E, Culha M (2013) Influence of droplet drying configuration on surface-enhanced Raman scattering performance. RSC Adv 3:17829–17836Google Scholar
  3. Begley RF, Harvey AB, Byer RL (2003) Coherent anti-Stokes Raman spectroscopy. Appl Phys Lett 25:387–390Google Scholar
  4. Benevides JM, Overman SA, Thomas GJ (2004) Raman spectroscopy of proteins. In: Current protocols in protein science. John Wiley & Sons, Inc, US, pp 17.8.1-17.8.35Google Scholar
  5. Biesso A, Qian W, El-Sayed MA (2008) Gold nanoparticle plasmonic field effect on the primary step of the other photosynthetic system in nature, bacteriorhodopsin. J Am Chem Soc 130:3258–3259PubMedGoogle Scholar
  6. Biesso A, Qian W, Huang X, El-Sayed MA (2009) Gold nanoparticles surface plasmon field effects on the proton pump process of the bacteriorhodopsin photosynthesis. J Am Chem Soc 131:2442–2443PubMedGoogle Scholar
  7. Borshchevskiy VI, Round ES, Popov AN, Büldt G, Gordeliy VI (2011) X-ray-radiation-induced changes in bacteriorhodopsin structure. J Mol Biol 409:813–825PubMedGoogle Scholar
  8. Braiman M, Mathies R (1980) Resonance Raman evidence for an all-trans to 13-cis isomerization in the proton-pumping cycle of bacteriorhodopsin. Biochemistry 19:5421–5428PubMedGoogle Scholar
  9. Carey P (1982) Biochemical applications of Raman and resonance Raman spectroscopies. Elsevier, New YorkGoogle Scholar
  10. Carpentier P, Royant A, Ohana J, Bourgeois D (2007) Advances in spectroscopic methods for biological crystals. 2. Raman spectroscopy. J Appl Crystallogr 40:1113–1122Google Scholar
  11. Charvolin D, Perez J-B, Rouvière F, Giusti F, Bazzacco P, Abdine A, Rappaport F, Martinez KL, Popot J-L (2009) The use of amphipols as universal molecular adapters to immobilize membrane proteins onto solid supports. Proc Natl Acad Sci USA 106:405–410Google Scholar
  12. Chumanov GD, Efremov RG, Nabiev IR (1990) Surface-enhanced Raman spectroscopy of biomolecules. Part I.—Water-soluble proteins, dipeptides and amino acids. J Raman Spectrosc 21:43–48Google Scholar
  13. Coluccio ML, Das G, Mecarini F, Gentile F, Pujia A, Bava L, Tallerico R, Candeloro P, Liberale C, De Angelis F, Di Fabrizio E (2009) Silver-based surface enhanced Raman scattering (SERS) substrate fabrication using nanolithography and site selective electroless deposition. Microelectron Eng 86:1085–1088Google Scholar
  14. Corni S, Tomasi J (2002) Surface enhanced Raman scattering from a single molecule adsorbed on a metal particle aggregate: a theoretical study. J Chem Phys 116:1156–1164Google Scholar
  15. Cui Y, Ren B, Yao J-L, Gu R-A, Tian Z-Q (2006) Synthesis of AgcoreAushell bimetallic nanoparticles for immunoassay based on surface-enhanced Raman spectroscopy. J Phys Chem B 110:4002–4006PubMedGoogle Scholar
  16. Dahmane T, Rappaport F, Popot J-L (2013) Amphipol-assisted folding of bacteriorhodopsin in the presence or absence of lipids: functional consequences. Eur Biophys J 42:85–101PubMedPubMedCentralGoogle Scholar
  17. Deckert-Gaudig T, Böhme R, Freier E, Sebesta A, Merkendorf T, Popp J, Gerwert K, Deckert V (2012) Nanoscale distinction of membrane patches—a TERS study of Halobacterium salinarum. J Biophotonics 5:582–591PubMedGoogle Scholar
  18. Delfino I, Bizzarri AR, Cannistraro S (2006) Time-dependent study of single-molecule SERS signal from yeast cytochrome c. Chem Phys 326:356–362Google Scholar
  19. Della Pia EA, Holm JV, Lloret N, Le Bon C, Popot J-L, Zoonens M, Nygård J, Martinez KL (2014a) A step closer to membrane protein multiplexed nanoarrays using biotin-doped polypyrrole. ACS Nano 8(2):1844–1853PubMedPubMedCentralGoogle Scholar
  20. Della Pia EA, Westh Hansen R, Zoonens M, Martinez KL (2014b) Functionalized amphipols: a versatile toolbox suitable for applications of membrane proteins in synthetic biology. J Membr Biol. doi: 10.1007/s00232-014-9663-y PubMedGoogle Scholar
  21. Dick LA, Haes AJ, Van Duyne RP (2000) Distance and orientation dependence of heterogeneous electron transfer: a surface-enhanced resonance Raman scattering study of cytochrome c bound to carboxylic acid terminated alkanethiols adsorbed on silver electrodes. J Phys Chem B 104:11752–11762Google Scholar
  22. Diller R, Stockburger M (1988) Kinetic resonance Raman studies reveal different conformational states of bacteriorhodopsin. Biochemistry 27:7641–7651Google Scholar
  23. Drachev VP, Thoreson MD, Khaliullin EN, Davisson VJ, Shalaev VM (2004) Surface-enhanced Raman difference between human insulin and insulin lispro detected with adaptive nanostructures. J Phys Chem B 108:18046–18052Google Scholar
  24. Drachev VP, Thoreson MD, Nashine V, Khaliullin EN, Ben-Amotz D, Davisson VJ, Shalaev VM (2005) Adaptive silver films for surface-enhanced Raman spectroscopy of biomolecules. J Raman Spectrosc 36:648–656Google Scholar
  25. Elter S, Raschle T, Arens S, Gelev V, Etzkorn M, Wagner G (2014) The use of amphipols for NMR structural characterization of 7-TM proteins. J Membr Biol. doi: 10.1007/s00232-014-9669-5 PubMedPubMedCentralGoogle Scholar
  26. Etzkorn M, Raschle T, Hagn F, Gelev V, Rice AJ, Walz T, Wagner G (2013) Cell-free expressed bacteriorhodopsin in different soluble membrane mimetics: biophysical properties and NMR accessibility. Struct Lond Engl 1993 21:394–401Google Scholar
  27. Etzkorn M, Zoonens M, Catoire LJ, Popot J-L, Hiller S (2014) How amphipols embed membrane proteins: global solvent accessibility and interaction with a flexible protein terminus. J Membr Biol. doi: 10.1007/s00232-014-9657-9 PubMedPubMedCentralGoogle Scholar
  28. Félidj N, Aubard J, Lévi G (1999) Discrete dipole approximation for ultraviolet–visible extinction spectra simulation of silver and gold colloids. J Chem Phys 111:1195–1208Google Scholar
  29. Fleischmann M, Hendra PJ, McQuillan AJ (1974) Raman spectra of pyridine adsorbed at a silver electrode. Chem Phys Lett 26:163–166Google Scholar
  30. Futamata M (2006) Single molecule sensitivity in SERS: importance of junction of adjacent Ag nanoparticles. Faraday Discuss 132:45–61PubMedGoogle Scholar
  31. Futamata M, Maruyama Y, Ishikawa M (2005) Critical importance of the junction in touching Ag particles for single molecule sensitivity in SERS. J Mol Struct 735–736:75–84Google Scholar
  32. Giusti F, Popot J-L, Tribet C (2012) Well-defined critical association concentration and rapid adsorption at the air/water interface of a short amphiphilic polymer, amphipol A8-35: a study by Förster resonance energy transfer and dynamic surface tension measurements. Langmuir 28:10372–10380PubMedPubMedCentralGoogle Scholar
  33. Gohon Y, Pavlov G, Timmins P, Tribet C, Popot J-L, Ebel C (2004) Partial specific volume and solvent interactions of amphipol A8-35. Anal Biochem 334:318–334PubMedPubMedCentralGoogle Scholar
  34. Gohon Y, Giusti F, Prata C, Charvolin D, Timmins P, Ebel C, Tribet C, Popot J-L (2006) Well-defined nanoparticles formed by hydrophobic assembly of a short and polydisperse random terpolymer, amphipol A8-35. Langmuir 22:1281–1290PubMedPubMedCentralGoogle Scholar
  35. Gohon Y, Dahmane T, Ruigrok RWH, Schuck P, Charvolin D, Rappaport F, Timmins P, Engelman DM, Tribet C, Popot J-L, Ebel C (2008) Bacteriorhodopsin/amphipol complexes: structural and functional properties. Biophys J 94:3523–3537PubMedPubMedCentralGoogle Scholar
  36. Gordeliy VI, Schlesinger R, Efremov R, Büldt G, Heberle J (2003) Crystallization in lipidic cubic phases: a case study with bacteriorhodopsin. Methods Mol Biol Clifton NJ 228:305–316Google Scholar
  37. Habuchi S, Cotlet M, Gronheid R, Dirix G, Michiels J, Vanderleyden J, De Schryver FC, Hofkens J (2003) Single-molecule surface enhanced resonance Raman spectroscopy of the enhanced Green Fluorescent Protein. J Am Chem Soc 125:8446–8447PubMedGoogle Scholar
  38. Hao E, Schatz GC (2003) Electromagnetic fields around silver nanoparticles and dimers. J Chem Phys 120:357–366Google Scholar
  39. Hildebrandt P, Stockburger M (1984) Role of water in bacteriorhodopsin’s chromophore: resonance Raman study. Biochemistry 23:5539–5548Google Scholar
  40. Hirai T, Subramaniam S, Lanyi JK (2009) Structural snapshots of conformational changes in a seven-helix membrane protein: lessons from bacteriorhodopsin. Curr Opin Struct Biol 19:433–439PubMedPubMedCentralGoogle Scholar
  41. Hrabakova J, Ataka K, Heberle J, Hildebrandt P, Murgida DH (2006) Long distance electron transfer in cytochrome c oxidase immobilised on electrodes. A surface enhanced resonance Raman spectroscopic study. Phys Chem Chem Phys 8:759–766PubMedGoogle Scholar
  42. Jeanmaire DL, Van Duyne RP (1977) Surface Raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J Electroanal Chem Interfacial Electrochem 84:1–20Google Scholar
  43. Jiang, Bosnick K, Maillard M, Brus L (2003) Single-molecule Raman spectroscopy at the junctions of large Ag nanocrystals. J Phys Chem B 107:9964–9972Google Scholar
  44. Kennedy BJ, Spaeth S, Dickey M, Carron KT (1999) Determination of the distance dependence and experimental effects for modified SERS substrates based on self-assembled monolayers formed using alkanethiols. J Phys Chem B 103:3640–3646Google Scholar
  45. Kleinschmidt JH, Popot J-L (2014) Folding and stability of integral membrane proteins in amphipols. Arch Biochem Biophys (in press)Google Scholar
  46. Kneipp K, Wang Y, Kneipp H, Perelman LT, Itzkan I, Dasari RR, Feld MS (1997) Single molecule detection using surface-enhanced Raman scattering (SERS). Phys Rev Lett 78:1667–1670Google Scholar
  47. Kneipp K, Kneipp H, Bohr HG (2006) Single-molecule SERS spectroscopy. In: Kneipp K, Moskovits M, Kneipp H (eds) Surface-enhanced Raman scattering. Springer, Berlin Heidelberg, pp 261–277Google Scholar
  48. Koo T-W, Chan S, Berlin AA (2005) Single-molecule detection of biomolecules by surface-enhanced coherent anti-stokes Raman scattering. Opt Lett 30:1024–1026PubMedGoogle Scholar
  49. Korenstein R, Hess B (1977a) Hydration effects on cistrans isomerization of bacteriorhodopsin. FEBS Lett 82:7–11PubMedGoogle Scholar
  50. Korenstein R, Hess B (1977b) Hydration effects on the photocycle of bacteriorhodopsin in thin layers of purple membrane. Nature 270:184–186PubMedGoogle Scholar
  51. Krogh A, Larsson B, von Heijne G, Sonnhammer EL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305:567–580PubMedGoogle Scholar
  52. Lanyi JK (2004) Bacteriorhodopsin. Annu Rev Physiol 66:665–688PubMedGoogle Scholar
  53. Lazarev YA, Evgeni LT (1980) Effect of water on the structure of bacteriorhodopsin and photochemical processes in purple membranes. Biochim Biophys Acta 590:324–338PubMedGoogle Scholar
  54. Le Bon C, Della Pia EA, Giusti F, Lloret N, Zoonens M, Martinez KL, Popot J-L (2014) Synthesis of an oligonucleotide-derivatized amphipol and its use to trap and immobilize membrane proteins. Nucleic Acids Res. doi: 10.1093/nar/gku250 Google Scholar
  55. Le Ru EC, Etchegoin PG (2012) Single-molecule surface-enhanced Raman spectroscopy. Annu Rev Phys Chem 63:65–87PubMedGoogle Scholar
  56. Le Ru EC, Etchegoin PG, Meyer M (2006a) Enhancement factor distribution around a single surface-enhanced Raman scattering hot spot and its relation to single molecule detection. J Chem Phys 125:204701PubMedGoogle Scholar
  57. Le Ru EC, Meyer M, Etchegoin PG (2006b) Proof of single-molecule sensitivity in surface enhanced-Raman scattering (SERS) by means of a two-analyte technique. J Phys Chem B 110:1944–1948PubMedGoogle Scholar
  58. Lee PC, Meisel D (1982) Adsorption and surface-enhanced Raman of dyes on silver and gold sols. J Phys Chem 86:3391–3395Google Scholar
  59. London E, Khorana HG (1982) Denaturation and renaturation of bacteriorhodopsin in detergents and lipid-detergent mixtures. J Biol Chem 257:7003–7011PubMedGoogle Scholar
  60. Maeda A (1995) Application of FTIR spectroscopy to the structural study on the function of bacteriorhodopsin. Isr J Chem 35:387–400Google Scholar
  61. Mathies RA (1991) From femtoseconds to biology: mechanism of bacteriorhodopsin’s light-driven proton pump. Proc Indian Acad Sci 103:283–293Google Scholar
  62. Morgan JE, Vakkasoglu AS, Lanyi JK, Lugtenburg J, Gennis RB, Maeda A (2012) Structure changes upon deprotonation of the proton release group in the bacteriorhodopsin photocycle. Biophys J 103:444–452PubMedPubMedCentralGoogle Scholar
  63. Moskovits M (1985) Surface-enhanced spectroscopy. Rev Mod Phys 57:783–826Google Scholar
  64. Munro CH, Smith WE, Garner M, Clarkson J, White PC (1995) Characterization of the surface of a citrate-reduced colloid optimized for use as a substrate for surface-enhanced resonance Raman scattering. Langmuir 11:3712–3720Google Scholar
  65. Myers AB, Harris RA, Mathies RA (1983) Resonance Raman excitation profiles of bacteriorhodopsin. J Chem Phys 79:603–613Google Scholar
  66. Nabiev IR, Efremóv RG, Chumanov GD (1985) The chromophore-binding site of bacteriorhodopsin. Resonance Raman and surface-enhanced resonance Raman spectroscopy and quantum chemical study. J Biosci 8:363–374Google Scholar
  67. Nabiev IR, Chumanov GD, Efremov RG (1990) Surface-enhanced Raman spectroscopy of biomolecules. Part II. Application of short- and long-range components of SERS to the study of the structure and function of membrane proteins. J Raman Spectrosc 21:49–53Google Scholar
  68. Naumann H, Klare JP, Engelhard M, Hildebrandt P, Murgida DH (2006) Time-resolved methods in Biophysics. 1. A novel pump and probe surface-enhanced resonance Raman approach for studying biological photoreceptors. Photochem Photobiol Sci 5:1103–1108PubMedGoogle Scholar
  69. Nie S, Emory SR (1997) Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275:1102–1106PubMedGoogle Scholar
  70. Oesterhelt D, Stoeckenius W (1974) Isolation of the cell membrane of Halobacterium halobium and its fractionation into red and purple membrane. Methods Enzymol 31:667–678PubMedGoogle Scholar
  71. Otto A (1984) Surface-enhanced Raman scattering: “Classical” and “Chemical” origins. In: Cardona PDM, Güntherodt PDG (eds) Light Scattering in solids IV. Springer, Berlin Heidelberg, pp 289–418Google Scholar
  72. Overington JP, Al-Lazikani B, Hopkins AL (2006) How many drug targets are there? Nat Rev Drug Discov 5:993–996PubMedGoogle Scholar
  73. Patra PP, Kumar GVP (2013) Single-molecule surface-enhanced Raman scattering sensitivity of Ag-core Au-shell nanoparticles: revealed by bi-analyte method. J Phys Chem Lett 4:1167–1171PubMedGoogle Scholar
  74. Perlmutter JD, Popot J-L, Sachs JN (2014) Molecular dynamics simulations of a membrane protein/amphipol complex. J Membr Biol. doi: 10.1007/s00232-014-9690-8 Google Scholar
  75. Peticolas WL (1995) Raman spectroscopy of DNA and proteins. In: Sauer K (ed) Methods in enzymology. Academic Press, London, pp 389–416Google Scholar
  76. Pocanschi CL, Dahmane T, Gohon Y, Rappaport F, Apell H-J, Kleinschmidt JH, Popot J-L (2006) Amphipathic polymers: tools to fold integral membrane proteins to their active form. Biochemistry 45:13954–13961Google Scholar
  77. Popot J-L (2010) Amphipols, nanodiscs, and fluorinated surfactants: three nonconventional approaches to studying membrane proteins in aqueous solutions. Annu Rev Biochem 79:737–775PubMedPubMedCentralGoogle Scholar
  78. Popot J-L, Berry EA, Charvolin D, Creuzenet C, Ebel C, Engelman DM, Flötenmeyer M, Giusti F, Gohon Y, Hong Q, Lakey JH, Leonard K, Shuman HA, Timmins P, Warschawski DE, Zito F, Zoonens M, Pucci B, Tribet C (2003) Amphipols: polymeric surfactants for membrane biology research. Cell Mol Life Sci 60:1559–1574Google Scholar
  79. Popot J-L, Althoff T, Bagnard D, Banères J-L, Bazzacco P, Billon-Denis E, Catoire LJ, Champeil P, Charvolin D, Cocco MJ, Crémel G, Dahmane T, de la Maza LM, Ebel C, Gabel F, Giusti F, Gohon Y, Goormaghtigh E, Guittet E, Kleinschmidt JH, Kühlbrandt W, Le Bon C, Martinez KL, Picard M, Pucci B, Sachs JN, Tribet C, van Heijenoort C, Wien F, Zito F, Zoonens M (2011) Amphipols from A to Z. Annu Rev Biophys 40:379–408Google Scholar
  80. Siddhanta S, Naray C (2012) Surface-enhanced Raman spectroscopy of proteins: implications in drug designing. Nanomater Nanotechnol 2:1Google Scholar
  81. Smith SO, Lugtenburg J, Mathies RA (1985) Determination of retinal chromophore structure in bacteriorhodopsin with resonance Raman spectroscopy. J Membr Biol 85:95–109PubMedGoogle Scholar
  82. Smith SO, Pardoen JA, Lugtenburg J, Mathies RA (1987a) Vibrational analysis of the 13-cis-retinal chromophore in dark-adapted bacteriorhodopsin. J Phys Chem 91:804–819Google Scholar
  83. Smith SO, Braiman MS, Myers AB, Pardoen JA, Courtin JML, Winkel C, Lugtenburg J, Mathies RA (1987b) Vibrational analysis of the all-trans-retinal chromophore in light-adapted bacteriorhodopsin. J Am Chem Soc 109:3108–3125Google Scholar
  84. Steuwe C, Kaminski CF, Baumberg JJ, Mahajan S (2011) Surface enhanced coherent anti-Stokes Raman scattering on nanostructured gold surfaces. Nano Lett 11:5339–5343PubMedGoogle Scholar
  85. Stiles PL, Dieringer JA, Shah NC, Van Duyne RP (2008) Surface-enhanced Raman spectroscopy. Annu Rev Anal Chem 1:601–626Google Scholar
  86. Tribet C, Audebert R, Popot J-L (1996) Amphipols: polymers that keep membrane proteins soluble in aqueous solutions. Proc Natl Acad Sci 93:15047–15050PubMedGoogle Scholar
  87. Tribet C, Diab C, Dahmane T, Zoonens M, Popot J-L, Winnik FM (2009) Thermodynamic characterization of the exchange of detergents and amphipols at the surfaces of integral membrane proteins. Langmuir 25:12623–12634Google Scholar
  88. Váró G, Lanyi JK (1991) Thermodynamics and energy coupling in the bacteriorhodopsin photocycle. Biochemistry 30:5016–5022PubMedGoogle Scholar
  89. Wang ZB, Luk’yanchuk BS, Guo W, Edwardson SP, Whitehead DJ, Li L, Liu Z, Watkins KG (2008) The influences of particle number on hot spots in strongly coupled metal nanoparticles chain. J Chem Phys 128:094705PubMedGoogle Scholar
  90. Xu H, Käll M (2003) Polarization-dependent surface-enhanced Raman spectroscopy of isolated silver nanoaggregates. ChemPhysChem 4:1001–1005PubMedGoogle Scholar
  91. Xu H, Bjerneld EJ, Käll M, Börjesson L (1999) Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering. Phys Rev Lett 83:4357–4360Google Scholar
  92. Xu H, Aizpurua J, Käll M, Apell P (2000) Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering. Phys Rev E 62:4318–4324Google Scholar
  93. Xu H, Bjerneld EJ, Aizpurua J, Apell P, Gunnarsson L, Petronis S, Kasemo B, Larsson C, Hook F, Kall M (2001) Interparticle coupling effects in surface-enhanced Raman scattering. In: BiOS 2001, the international symposium on biomedical optics. International Society for Optics and Photonics, pp 35–42Google Scholar
  94. Yang Y, Shi J, Kawamura G, Nogami M (2008) Preparation of Au–Ag, Ag–Au core–shell bimetallic nanoparticles for surface-enhanced Raman scattering. Scr Mater 58:862–865Google Scholar
  95. Yen C-W, Chu L-K, El-Sayed MA (2010) Plasmonic field enhancement of the bacteriorhodopsin photocurrent during its proton pump photocycle. J Am Chem Soc 132:7250–7251PubMedGoogle Scholar
  96. Zoonens M, Popot J-L (2014) Amphipols for each season. J Membr Biol. doi: 10.1007/s00232-014-9666-8 PubMedPubMedCentralGoogle Scholar
  97. Zoonens M, Giusti F, Zito F, Popot J-L (2007) Dynamics of membrane protein/amphipol association studied by Förster resonance energy transfer: implications for in vitro studies of amphipol-stabilized membrane proteins. Biochemistry 46:10392–10404PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • V. Polovinkin
    • 1
    • 2
    • 3
    • 4
  • T. Balandin
    • 5
  • O. Volkov
    • 5
    • 6
  • E. Round
    • 5
  • V. Borshchevskiy
    • 4
    • 5
  • P. Utrobin
    • 1
    • 2
    • 3
  • D. von Stetten
    • 7
  • A. Royant
    • 1
    • 2
    • 3
    • 7
  • D. Willbold
    • 5
    • 8
  • G. Arzumanyan
    • 9
  • V. Chupin
    • 4
  • J.-L. Popot
    • 10
  • V. Gordeliy
    • 1
    • 2
    • 3
    • 4
    • 5
    Email author
  1. 1.Univ. Grenoble Alpes, IBSGrenobleFrance
  2. 2.CNRS, IBSGrenobleFrance
  3. 3.CEA, IBSGrenobleFrance
  4. 4.Laboratory for Advanced Studies of Membrane ProteinsMoscow Institute of Physics and TechnologyDolgoprudnyRussia
  5. 5.Institute of Complex Systems (ICS), ICS-6: Structural BiochemistryResearch Centre JuelichJuelichGermany
  6. 6.Institute of CrystallographyUniversity of Aachen (Rheinisch-Westfälische Technische Hochschule)AachenGermany
  7. 7.European Synchrotron Radiation FacilityGrenobleFrance
  8. 8.Institut für Physikalische BiologieHeinrich-Heine-Universität DüsseldorfDüsseldorfGermany
  9. 9.Multi Access Centre “Nanobiophotonics”Joint Institute for Nuclear ResearchDubnaRussia
  10. 10.Laboratoire de Physico-Chimie Moléculaire des Membranes Biologiques, UMR 7099, Institut de Biologie Physico-Chimique (CNRS FRC 550)Centre National de la Recherche Scientifique and Université Paris-7ParisFrance

Personalised recommendations