Advertisement

The Journal of Membrane Biology

, Volume 247, Issue 9–10, pp 1053–1065 | Cite as

Long-Term Stability of a Vaccine Formulated with the Amphipol-Trapped Major Outer Membrane Protein from Chlamydia trachomatis

  • H. Eric Feinstein
  • Delia Tifrea
  • Guifeng Sun
  • Jean-Luc Popot
  • Luis M. de la Maza
  • Melanie J. CoccoEmail author
Article

Abstract

Chlamydia trachomatis is a major bacterial pathogen throughout the world. Although antibiotic therapy can be implemented in the case of early detection, a majority of the infections are asymptomatic, requiring the development of preventive measures. Efforts have focused on the production of a vaccine using the C. trachomatis major outer membrane protein (MOMP). MOMP is purified in its native (n) trimeric form using the zwitterionic detergent Z3–14, but its stability in detergent solutions is limited. Amphipols (APols) are synthetic polymers that can stabilize membrane proteins (MPs) in detergent-free aqueous solutions. Preservation of protein structure and optimization of exposure of the most effective antigenic regions can avoid vaccination with misfolded, poorly protective protein. Previously, we showed that APols maintain nMOMP secondary structure and that nMOMP/APol vaccine formulations elicit better protection than formulations using either recombinant or nMOMP solubilized in Z3–14. To achieve a greater understanding of the structural behavior and stability of nMOMP in APols, we have used several spectroscopic techniques to characterize its secondary structure (circular dichroism), tertiary and quaternary structures (immunochemistry and gel electrophoresis) and aggregation state (light scattering) as a function of temperature and time. We have also recorded NMR spectra of 15N-labeled nMOMP and find that the exposed loops are detectable in APols but not in detergent. Our analyses show that APols protect nMOMP much better than Z3–14 against denaturation due to continuous heating, repeated freeze/thaw cycles, or extended storage at room temperature. These results indicate that APols can help improve MP-based vaccine formulations.

Keywords

Amphipols Vaccine Stability MOMP Chlamydia trachomatis NMR 

Notes

Acknowledgments

We thank Stephen White and Wytze van der Veer (UC Irvine) for the use of the circular dichroism spectrophotometers and Fabrice Giusti (IBPC) for the synthesis of amphipol A8–35. We also thank Cambridge Isotopes for the gift of insect cell media for pilot expression studies. This work was supported by grant R01AI092129 from the National Institute of Allergy and Infectious Diseases, by the Centre National de la Recherche Scientifique, by University Paris-7, and by the “Initiative d’Excellence” program from the French State (Grant “DYNAMO”, ANR-11-LABX-0011-01).

Supplementary material

232_2014_9693_MOESM1_ESM.pdf (924 kb)
Supplementary material 1 (PDF 924 kb)

References

  1. Akers MJ, Milton N, Byrn SR, Nail SL (1995) Glycine crystallization during freezing: the effects of salt form, pH, and ionic strength. Pharm Res 12:1457–1461CrossRefGoogle Scholar
  2. Allan I, Pearce JH (1983) Amino acid requirements of strains of Chlamydia trachomatis and C. psittaci growing in McCoy cells: relationship with clinical syndrome and host origin. J Gen Microbiol 129:2001–2007PubMedGoogle Scholar
  3. Bazzacco P, Billon-Denis E, Sharma KS, Catoire LJ, Mary S, Le Bon C, Point E, Banères JL, Durand G, Zito F, Pucci B, Popot J-L (2012) Nonionic homopolymeric amphipols: application to membrane protein folding, cell-free synthesis, and solution nuclear magnetic resonance. Biochemistry 51:1416–1430CrossRefGoogle Scholar
  4. Blake MS, Gotschlich EC (1984) Purification and partial characterization of the opacity-associated proteins of Neisseria gonorrhoeae. J Exp Med 159:452–462CrossRefGoogle Scholar
  5. Bowie JU (2001) Stabilizing membrane proteins. Curr Opin Struct Biol 11:397–402CrossRefGoogle Scholar
  6. Breyton C, Tribet C, Olive J, Dubacq JP, Popot J-L (1997) Dimer to monomer conversion of the cytochrome b6f complex. Causes and consequences. J Biol Chem 272:21892–21900CrossRefGoogle Scholar
  7. Cai S, He F, Samra HS, de la Maza LM, Bottazzi ME, Joshi SB, Middaugh CR (2009) Biophysical and stabilization studies of the Chlamydia trachomatis mouse pneumonitis major outer membrane protein. Mol Pharm 6:1553–1561CrossRefGoogle Scholar
  8. Caldwell HD, Kromhout J, Schachter J (1981) Purification and partial characterization of the major outer membrane protein of Chlamydia trachomatis. Infect Immun 31:1161–1176PubMedPubMedCentralGoogle Scholar
  9. Cao E, Chen Y, Cui Z, Foster PR (2003) Effect of freezing and thawing rates on denaturation of proteins in aqueous solutions. Biotechnol Bioeng 82:684–690CrossRefGoogle Scholar
  10. Catoire LJ, Zoonens M, van Heijenoort C, Giusti F, Popot J-L, Guittet E (2009) Inter- and intramolecular contacts in a membrane protein/surfactant complex observed by heteronuclear dipole-to-dipole cross-relaxation. J Magn Reson 197:91–95CrossRefGoogle Scholar
  11. Catoire LJ, Damian M, Giusti F, Martin A, van Heijenoort C, Popot J-L, Guittet E, Banères JL (2010a) Structure of a GPCR ligand in its receptor-bound state: leukotriene B4 adopts a highly constrained conformation when associated to human BLT2. J Am Chem Soc 132:9049–9057CrossRefGoogle Scholar
  12. Catoire LJ, Zoonens M, van Heijenoort C, Giusti F, Guittet E, Popot J-L (2010b) Solution NMR mapping of water-accessible residues in the transmembrane β-barrel of OmpX. Eur Biophys J 39:623–630CrossRefGoogle Scholar
  13. Catoire LJ, Damian M, Baaden M, Guittet E, Banères JL (2011) Electrostatically-driven fast association and perdeuteration allow detection of transferred cross-relaxation for G protein-coupled receptor ligands with equilibrium dissociation constants in the high-to-low nanomolar range. J Biomol NMR 50:191–195CrossRefGoogle Scholar
  14. Champeil P, Menguy T, Tribet C, Popot J-L, le Maire M (2000) Interaction of amphipols with sarcoplasmic reticulum Ca2+-ATPase. J Biol Chem 275:18623–18637CrossRefGoogle Scholar
  15. Chang BS, Kendrick BS, Carpenter JF (1996) Surface-induced denaturation of proteins during freezing and its inhibition by surfactants. J Pharm Sci 85:1325–1330CrossRefGoogle Scholar
  16. Dahmane T, Damian M, Mary S, Popot J-L, Banères JL (2009) Amphipol-assisted in vitro folding of G protein-coupled receptors. Biochemistry 48:6516–6521CrossRefGoogle Scholar
  17. Dahmane T, Giusti F, Catoire LJ, Popot J-L (2011) Sulfonated amphipols: synthesis, properties, and applications. Biopolymers 95:811–823CrossRefGoogle Scholar
  18. Dahmane T, Rappaport F, Popot J-L (2013) Amphipol-assisted folding of bacteriorhodopsin in the presence or absence of lipids: functional consequences. Eur Biophys J 42:85–101CrossRefGoogle Scholar
  19. Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6:277–293CrossRefGoogle Scholar
  20. Elter S, Raschle T, Arens S, Viegas A, Gelev V, Etzkorn M, Wagner G (2014) Use of amphipols for the NMR structural characterization of 7-TM receptors. J Membr Biol. doi: 10.1007/s00232-014-9669-5 CrossRefGoogle Scholar
  21. Etzkorn M, Raschle T, Hagn F, Gelev V, Rice AJ, Walz T, Wagner G (2013) Cell-free expressed bacteriorhodopsin in different soluble membrane mimetics: biophysical properties and NMR accessibility. Structure 21:394–401CrossRefGoogle Scholar
  22. Etzkorn M, Zoonens M, Catoire LJ, Popot J-L, Hiller S (2014) How amphipols embed membrane proteins: global solvent accessibility and interaction with a flexible protein terminus. J Membr Biol. doi: 10.1007/s00232-014-9657-9 CrossRefGoogle Scholar
  23. Fan H, Li H, Zhang M, Middaugh CR (2007) Effects of solutes on empirical phase diagrams of human fibroblast growth factor 1. J Pharm Sci 96:1490–1503CrossRefGoogle Scholar
  24. Franks F, Hatley RH (1985) Low-temperature unfolding of chymotrypsinogen. Cryobiology 22:608CrossRefGoogle Scholar
  25. Garavito RM, Ferguson-Miller S (2001) Detergents as tools in membrane biochemistry. J Biol Chem 276:32403–32406CrossRefGoogle Scholar
  26. Giusti F, Popot J-L, Tribet C (2012) Well-defined critical association concentration and rapid adsorption at the air/water interface of a short amphiphilic polymer, amphipol A8-35: a study by Förster resonance energy transfer and dynamic surface tension measurements. Langmuir 28:10372–10380CrossRefGoogle Scholar
  27. Giusti F, Rieger J, Catoire LJ, Qian S, Calabrese AN, Watkinson TG, Casiraghi M, Radford SE, Ashcroft AE, Popot J-L (2014) Synthesis, characterization and applications of a perdeuterated amphipol. J Membr Biol doi: 10.1007/s00232-014-9656-x CrossRefGoogle Scholar
  28. Gohon Y, Popot J-L (2003) Membrane protein–surfactant complexes. Curr Opin Colloid Interface Sci 8:15–22CrossRefGoogle Scholar
  29. Gohon Y, Pavlov G, Timmins P, Tribet C, Popot J-L, Ebel C (2004) Partial specific volume and solvent interactions of amphipol A8-35. Anal Biochem 334:318–334CrossRefGoogle Scholar
  30. Gohon Y, Giusti F, Prata C, Charvolin D, Timmins P, Ebel C, Tribet C, Popot J-L (2006) Well-defined nanoparticles formed by hydrophobic assembly of a short and polydisperse random terpolymer, amphipol A8-35. Langmuir 22:1281–1290CrossRefGoogle Scholar
  31. Gohon Y, Dahmane T, Ruigrok RW, Schuck P, Charvolin D, Rappaport F, Timmins P, Engelman DM, Tribet C, Popot J-L, Ebel C (2008) Bacteriorhodopsin/amphipol complexes: structural and functional properties. Biophys J 94:3523–3537CrossRefGoogle Scholar
  32. Griko YV, Privalov PL, Sturtevant JM, Venyaminov S (1988) Cold denaturation of staphylococcal nuclease. Proc Natl Acad Sci USA 85:3343–3347CrossRefGoogle Scholar
  33. Harper A, Pogson CI, Pearce JH (2000) Amino acid transport into cultured McCoy cells infected with Chlamydia trachomatis. Infect Immun 68:5439–5442CrossRefGoogle Scholar
  34. Jansen C, Wiese A, Reubsaet L, Dekker N, de Cock H, Seydel U, Tommassen J (2000) Biochemical and biophysical characterization of in vitro folded outer membrane porin PorA of Neisseria meningitidis. Biochim Biophys Acta 1464:284–298CrossRefGoogle Scholar
  35. Jiang S, Nail SL (1998) Effect of process conditions on recovery of protein activity after freezing and freeze-drying. Eur J Pharm Biopharm 45:249–257CrossRefGoogle Scholar
  36. Kolhe P, Amend E, Singh SK (2010) Impact of freezing on pH of buffered solutions and consequences for monoclonal antibody aggregation. Biotechnol Prog 26:727–733CrossRefGoogle Scholar
  37. Kristensen D, Chen D, Cummings R (2011) Vaccine stabilization: research, commercialization, and potential impact. Vaccine 29:7122–7124CrossRefGoogle Scholar
  38. Kueltzo LA, Wang W, Randolph TW, Carpenter JF (2008) Effects of solution conditions, processing parameters, and container materials on aggregation of a monoclonal antibody during freeze-thawing. J Pharm Sci 97:1801–1812CrossRefGoogle Scholar
  39. Minetti CA, Tai JY, Blake MS, Pullen JK, Liang SM, Remeta DP (1997) Structural and functional characterization of a recombinant PorB class 2 protein from Neisseria meningitidis. Conformational stability and porin activity. J Biol Chem 272:10710–10720CrossRefGoogle Scholar
  40. Moulder JW (1974) Intracellular parasitism: life in an extreme environment. J Infect Dis 130:300–306CrossRefGoogle Scholar
  41. Murase N, Franks F (1989) Salt precipitation during the freeze-concentration of phosphate buffer solutions. Biophys Chem 34:293–300CrossRefGoogle Scholar
  42. Nigg C (1942) An unidentified virus which produces pneumonia and systemic infection in mice. Science 95:49–50CrossRefGoogle Scholar
  43. Opačić M, Durand G, Bosco M, Polidori A, Popot J-L (2014) Amphipols and photosynthetic pigment-protein complexes. J Membr Biol (submitted)Google Scholar
  44. Pal S, Theodor I, Peterson EM, de la Maza LM (1997) Immunization with an acellular vaccine consisting of the outer membrane complex of Chlamydia trachomatis induces protection against a genital challenge. Infect Immun 65:3361–3369PubMedPubMedCentralGoogle Scholar
  45. Pal S, Davis HL, Peterson EM, de la Maza LM (2002) Immunization with the Chlamydia trachomatis mouse pneumonitis major outer membrane protein by use of CpG oligodeoxynucleotides as an adjuvant induces a protective immune response against an intranasal chlamydial challenge. Infect Immun 70:4812–4817CrossRefGoogle Scholar
  46. Patois E, Capelle MA, Gurny R, Arvinte T (2011) Stability of seasonal influenza vaccines investigated by spectroscopy and microscopy methods. Vaccine 29:7404–7413CrossRefGoogle Scholar
  47. Perlmutter J, Popot J-L, Sachs J (2014) Molecular dynamics simulations of a membrane protein/amphipol complex. J Membr Biol. doi: 10.1007/s00232-014-9690-8 CrossRefGoogle Scholar
  48. Picard M, Dahmane T, Garrigos M, Gauron C, Giusti F, le Maire M, Popot J-L, Champeil P (2006) Protective and inhibitory effects of various types of amphipols on the Ca2+-ATPase from sarcoplasmic reticulum: a comparative study. Biochemistry 45:1861–1869CrossRefGoogle Scholar
  49. Planchard N, Point E, Dahmane T, Giusti F, Renault M, Le Bon C, Durand G, Milon A, Guittet E, Zoonens M, Popot J-L, Catoire LJ (2014) The use of amphipols for solution NMR studies of membrane proteins: advantages and constraints as compared to other solubilizing media. J Membr Biol. doi: 10.1007/s00232-014-9654-z CrossRefGoogle Scholar
  50. Pocanschi CL, Popot J-L, Kleinschmidt JH (2013) Folding and stability of outer membrane protein A (OmpA) from Escherichia coli in an amphipathic polymer, amphipol A8-35. Eur Biophys J 42:103–118CrossRefGoogle Scholar
  51. Popot J-L (2010) Amphipols, nanodiscs, and fluorinated surfactants: three nonconventional approaches to studying membrane proteins in aqueous solutions. Annu Rev Biochem 79:737–775CrossRefGoogle Scholar
  52. Popot J-L, Berry EA, Charvolin D, Creuzenet C, Ebel C, Engelman DM, Flötenmeyer M, Giusti F, Gohon Y, Hervé P, Hong Q, Lakey JH, Leonard K, Shuman HA, Timmins P, Warschawski DE, Zito F, Zoonens M, Pucci B, Tribet C (2003) Amphipols: polymeric surfactants for membrane biology research. Cell Mol Life Sci 60:1559–1574CrossRefGoogle Scholar
  53. Popot J-L, Althoff T, Bagnard D, Baneres JL, Bazzacco P, Billon-Denis E, Catoire LJ, Champeil P, Charvolin D, Cocco MJ, Cremel G, Dahmane T, de la Maza LM, Ebel C, Gabel F, Giusti F, Gohon Y, Goormaghtigh E, Guittet E, Kleinschmidt JH, Kuhlbrandt W, Le Bon C, Martinez KL, Picard M, Pucci B, Sachs JN, Tribet C, van Heijenoort C, Wien F, Zito F, Zoonens M (2011) Amphipols from A to Z. Annu Rev Biophys 40(40):379–408CrossRefGoogle Scholar
  54. Raschle T, Hiller S, Etzkorn M, Wagner G (2010) Nonmicellar systems for solution NMR spectroscopy of membrane proteins. Curr Opin Struct Biol 20:471–479CrossRefGoogle Scholar
  55. Renault M (2008) Etudes structurales et dynamiques de la protéine membranaire KpOmpA par RMN en phase liquide et solide. Ph.D. Thesis, Université Paul Sabatier, ToulouseGoogle Scholar
  56. Rosenbusch JP (2001) Stability of membrane proteins: relevance for the selection of appropriate methods for high-resolution structure determinations. J Struct Biol 136:144–157CrossRefGoogle Scholar
  57. Salnikova MS, Joshi SB, Rytting JH, Warny M, Middaugh CR (2008) Physical characterization of Clostridium difficile toxins and toxoids: effect of the formaldehyde crosslinking on thermal stability. J Pharm Sci 97:3735–3752CrossRefGoogle Scholar
  58. Schägger H, von Jagow G (1987) Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem 166:368–379CrossRefGoogle Scholar
  59. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675CrossRefGoogle Scholar
  60. Schwegman JJ, Carpenter JF, Nail SL (2009) Evidence of partial unfolding of proteins at the ice/freeze-concentrate interface by infrared microscopy. J Pharm Sci 98:3239–3246CrossRefGoogle Scholar
  61. Strambini GB, Gabellieri E (1996) Proteins in frozen solutions: evidence of ice-induced partial unfolding. Biophys J 70:971–976CrossRefGoogle Scholar
  62. Sun G, Pal S, Sarcon AK, Kim S, Sugawara E, Nikaido H, Cocco MJ, Peterson EM, de la Maza LM (2007) Structural and functional analyses of the major outer membrane protein of Chlamydia trachomatis. J Bacteriol 189:6222–6235CrossRefGoogle Scholar
  63. Tifrea DF, Sun G, Pal S, Zardeneta G, Cocco MJ, Popot J-L, de la Maza LM (2011) Amphipols stabilize the Chlamydia major outer membrane protein and enhance its protective ability as a vaccine. Vaccine 29:4623–4631CrossRefGoogle Scholar
  64. Tifrea DF, Pal S, Popot J-L, Cocco MJ, de la Maza LM (2014) Increased immunoaccessibility of MOMP epitopes in a vaccine formulated with amphipols may account for the very robust protection elicited against a vaginal challenge with Chlamydia muridarum. J Immunol 192:5201–5213CrossRefGoogle Scholar
  65. Tribet C, Audebert R, Popot J-L (1996) Amphipols: polymers that keep membrane proteins soluble in aqueous solutions. Proc Natl Acad Sci USA 93:15047–15050CrossRefGoogle Scholar
  66. Webby RJ, Sandbulte MR (2008) Influenza vaccines. Front Biosci 13:4912–4924CrossRefGoogle Scholar
  67. Weiss WFt, Young TM, Roberts CJ (2009) Principles, approaches, and challenges for predicting protein aggregation rates and shelf life. J Pharm Sci 98:1246–1277CrossRefGoogle Scholar
  68. Zhang A, Qi W, Singh SK, Fernandez EJ (2011) A new approach to explore the impact of freeze-thaw cycling on protein structure: hydrogen/deuterium exchange mass spectrometry (HX-MS). Pharm Res 28:1179–1193CrossRefGoogle Scholar
  69. Zoonens M, Popot J-L (2014) Amphipols for each season. J Membr Biol. doi: 10.1007/s00232-014-9666-8 CrossRefGoogle Scholar
  70. Zoonens M, Catoire LJ, Giusti F, Popot J-L (2005) NMR study of a membrane protein in detergent-free aqueous solution. Proc Natl Acad Sci USA 102:8893–8898CrossRefGoogle Scholar
  71. Zoonens M, Giusti F, Zito F, Popot J-L (2007) Dynamics of membrane protein/amphipol association studied by Förster resonance energy transfer: implications for in vitro studies of amphipol-stabilized membrane proteins. Biochemistry 46:10392–10404CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • H. Eric Feinstein
    • 1
  • Delia Tifrea
    • 1
  • Guifeng Sun
    • 1
  • Jean-Luc Popot
    • 2
  • Luis M. de la Maza
    • 1
  • Melanie J. Cocco
    • 3
    Email author
  1. 1.Department of Pathology and Laboratory MedicineUniversity of CaliforniaIrvineUSA
  2. 2.UMR 7099, Centre National de la Recherche Scientifique and Paris–7 University, Institut de Biologie Physico-Chimique (CNRS FRC 550)ParisFrance
  3. 3.Department of Molecular Biology and BiochemistryUniversity of CaliforniaIrvineUSA

Personalised recommendations