Advertisement

The Journal of Membrane Biology

, Volume 247, Issue 9–10, pp 1043–1051 | Cite as

In Vivo Characterization of the Biodistribution Profile of Amphipol A8–35

  • A. Fernandez
  • C. Le Bon
  • N. Baumlin
  • F. Giusti
  • G. Crémel
  • J.-L. Popot
  • D. BagnardEmail author
Article

Abstract

Amphipols (APols) are polymeric surfactants that keep membrane proteins (MPs) water-soluble in the absence of detergent, while stabilizing them. They can be used to deliver MPs and other hydrophobic molecules in vivo for therapeutic purposes, e.g., vaccination or targeted delivery of drugs. The biodistribution and elimination of the best characterized APol, a polyacrylate derivative called A8–35, have been examined in mice, using two fluorescent APols, grafted with either Alexa Fluor 647 or rhodamine. Three of the most common injection routes have been used, intravenous (IV), intraperitoneal (IP), and subcutaneous (SC). The biodistribution has been studied by in vivo fluorescence imaging and by determining the concentration of fluorophore in the main organs. Free rhodamine was used as a control. Upon IV injection, A8–35 distributes rapidly throughout the organism and is found in most organs but the brain and spleen, before being slowly eliminated (10–20 days). A similar pattern is observed after IP injection, following a brief latency period during which the polymer remains confined to the peritoneal cavity. Upon SC injection, A8–35 remains essentially confined to the point of injection, from which it is only slowly released. An interesting observation is that A8–35 tends to accumulate in fat pads, suggesting that it could be used to deliver anti-obesity drugs.

Keywords

Membrane proteins Surfactants Polymers Vectorization Vaccination Obesity 

Notes

Acknowledgments

This work has been carried out within the LABEX ANR-10-LABX-0034 Medalis and received a financial support from French Government managed by “Agence National de la Recherche” under “Programme d’investissement d’avenir” and Fondation pour la Recherche Médicale (FRM/Rotary International), the French Centre National de la Recherche Scientifique, University Paris-7, U.S. National Grant R01AI092129 from the National Institute of Allergy and Infectious Diseases, French Agence Nationale pour la Recherche Grant “X-Or”, ANR SVSE5 2010-BLAN-1535, and Grant “DYNAMO”, ANR-11-LABX-0011-01 from the French “Initiative d’Excellence” Program.

References

  1. Blankson H, Stakkestad JA, Fagertun H, Thom E, Wadstein J, Gudmundsen O (2000) Conjugated linoleic acid reduces body fat mass in overweight and obese humans. J Nutr 130:2943–2948CrossRefGoogle Scholar
  2. Charvolin D, Perez J-B, Rouvière F, Giusti F, Bazzacco P, Abdine A, Rappaport F, Martinez KL, Popot J-L (2009) The use of amphipols as universal molecular adapters to immobilize membrane proteins onto solid supports. Proc Natl Acad Sci USA 106:405–410CrossRefGoogle Scholar
  3. Destouches D, Page N, Hamma-Kourbali Y, Machi V, Chaloin O, Frechault S, Birmpas C, Katsoris P, Beyrath J, Albanese P, Maurer M, Carpentier G, Strub J-M, Van Dorsselaer A, Muller S, Bagnard D, Briand JP, Courty J (2011) A simple approach to cancer therapy afforded by multivalent pseudopeptides that target cell-surface nucleoproteins. Cancer Res 71:3296–3305CrossRefGoogle Scholar
  4. Ding H, Wu F (2012) Image guided biodistribution and pharmacokinetic studies of theranostics. Theranostics 2:1040–1053CrossRefGoogle Scholar
  5. Giusti F, Popot J-L, Tribet C (2012) Well-defined critical association concentration and rapid adsorption at the air/water interface of a short amphiphilic polymer, amphipol A8–35: a study by Förster resonance energy transfer and dynamic surface tension measurements. Langmuir 28:10372–10380CrossRefGoogle Scholar
  6. Gohon Y, Pavlov G, Timmins P, Tribet C, Popot J-L, Ebel C (2004) Partial specific volume and solvent interactions of amphipol A8–35. Anal Biochem 334:318–334CrossRefGoogle Scholar
  7. Gohon Y, Giusti F, Prata C, Charvolin D, Timmins P, Ebel C, Tribet C, Popot J-L (2006) Well-defined nanoparticles formed by hydrophobic assembly of a short and polydisperse random terpolymer, amphipol A8–35. Langmuir 22:1281–1290CrossRefGoogle Scholar
  8. Kim D, Park J-H, Kweon D-J, Han GD (2013) Bioavailability of nanoemulsified conjugated linoleic acid for an antiobesity effect. Int J Nanomed 8:451–459Google Scholar
  9. Lai CP, Mardini O, Ericsson M, Prabhakar S, Maguire CA, Chen JW, Tannous BA, Breakefield XO (2014) Dynamic biodistribution of extracellular vesicles in vivo using a multimodal imaging reporter. ACS Nano 8:483–594CrossRefGoogle Scholar
  10. Le Bon C, Popot J-L, Giusti F (2014) Labeling and functionalizing amphipols for biological applications. J Membr Biol. doi: 10.1007/s00232-014-9655-y CrossRefGoogle Scholar
  11. Nasarre C, Roth M, Jacob L, Roth L, Koncina E, Thien A, Labourdette G, Poulet P, Hubert P, Crémel G, Roussel G, Aunis D, Bagnard D (2010) Peptide-based interference of the transmembrane domain of neuropilin-1 inhibits glioma growth in vivo. Oncogene 29:2381–2392CrossRefGoogle Scholar
  12. Page N, Gros F, Schall N, Décossas M, Bagnard D, Briand J-P, Muller S (2011) HSC70 blockade by the therapeutic peptide P140 affects autophagic processes and endogenous MHCII presentation in murine lupus. Ann Rheum Dis 70:837–843CrossRefGoogle Scholar
  13. Popot J-L, Berry EA, Charvolin D, Creuzenet C, Ebel C, Engelman DM, Flötenmeyer M, Giusti F, Gohon Y, Hervé P, Hong Q, Lakey JH, Leonard K, Shuman HA, Timmins P, Warschawski DE, Zito F, Zoonens M, Pucci B, Tribet C (2003) Amphipols: polymeric surfactants for membrane biology research. Cell Mol Life Sci 60:1559–1574CrossRefGoogle Scholar
  14. Popot J-L, Althoff T, Bagnard D, Banères J-L, Bazzacco P, Billon-Denis E, Catoire LJ, Champeil P, Charvolin D, Cocco MJ, Crémel G, Dahmane T, de la Maza LM, Ebel C, Gabel F, Giusti F, Gohon Y, Goormaghtigh E, Guittet E, Kleinschmidt JH, Kühlbrandt W, Le Bon C, Martinez KL, Picard M, Pucci B, Rappaport F, Sachs JN, Tribet C, van Heijenoort C, Wien F, Zito F, Zoonens M (2011) Amphipols from A to Z. Annu Rev Biophys 40:379–408CrossRefGoogle Scholar
  15. Schoellhammer CM, Blankschtein D, Langer R (2014) Skin permeabilization for transdermal drug delivery: recent advances and future prospects. Expert Opin Drug Deliv 11:393–407CrossRefGoogle Scholar
  16. Tifrea DF, Sun G, Pal S, Zardeneta G, Cocco MJ, Popot J-L, de la Maza LM (2011) Amphipols stabilize the Chlamydia major outer membrane protein and enhance its protective ability as a vaccine. Vaccine 29:4623–4631CrossRefGoogle Scholar
  17. Tifrea D, Pal S, Cocco MJ, Popot J-L, de la Maza LM (2014) Increased immuno accessibility of MOMP epitopes in a vaccine formulated with amphipols may account for the very robust protection elicited against a vaginal challenge with C. muridarum. J Immunol 192(11):5201–5213Google Scholar
  18. Tribet C, Audebert R, Popot J-L (1996) Amphipols: polymers that keep membrane proteins soluble in aqueous solutions. Proc Natl Acad Sci USA 93:15047–15050CrossRefGoogle Scholar
  19. Tribet C, Audebert R, Popot J-L (1997) Stabilization of hydrophobic colloidal dispersions in water with amphiphilic polymers: application to integral membrane proteins. Langmuir 13:5570–5576CrossRefGoogle Scholar
  20. Tribet C, Diab C, Dahmane T, Zoonens M, Popot J-L, Winnik FM (2009) Thermodynamic characterization of the exchange of detergents and amphipols at the surfaces of integral membrane proteins. Langmuir 25:12623–12634CrossRefGoogle Scholar
  21. Zoonens M, Popot J-L (2014) Amphipols for each season. J Membrane Biol. doi: 10.1007/s00232-014-9666-8 CrossRefGoogle Scholar
  22. Zoonens M, Giusti F, Zito F, Popot J-L (2007) Dynamics of membrane protein/amphipol association studied by Förster resonance energy transfer. Implications for in vitro studies of amphipol-stabilized membrane proteins. Biochemistry 46:10392–10404CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • A. Fernandez
    • 1
  • C. Le Bon
    • 2
  • N. Baumlin
    • 1
  • F. Giusti
    • 2
  • G. Crémel
    • 1
  • J.-L. Popot
    • 2
  • D. Bagnard
    • 1
    Email author
  1. 1.INSERM U1109, MN3t Lab, Labex MedalisUniversity of StrasbourgStrasbourgFrance
  2. 2.Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, UMR 7099, Institut de Biologie Physico-Chimique (FRC 550)Centre National de la Recherche Scientifique/Université Paris 7ParisFrance

Personalised recommendations