Advertisement

The Journal of Membrane Biology

, Volume 247, Issue 9–10, pp 853–860 | Cite as

Amphipols in G Protein-Coupled Receptor Pharmacology: What Are They Good For?

  • Sophie Mary
  • Marjorie Damian
  • Rita Rahmeh
  • Bernard Mouillac
  • Jacky Marie
  • Sébastien Granier
  • Jean-Louis BanèresEmail author
Article

Abstract

G protein-coupled receptors are at a central node of all cell communications. Investigating their molecular functioning is therefore crucial for both academic purposes and drug design. However, getting the receptors as isolated, stable and purified proteins for such studies still stumbles over their instability out of the membrane environment. Different membrane-mimicking environments have been developed so far to increase the stability of purified receptors. Among them are amphipols. These polymers not only preserve the native fold of receptors purified from membrane fractions but they also allow specific applications such as folding receptors purified from inclusion bodies back to their native state. Of importance, amphipol-trapped G protein-coupled receptors essentially maintain their pharmacological properties so that they are perfectly adapted to further investigate the molecular mechanisms underlying signaling processes. We review here how amphipols have been used to refold and stabilize detergent-solubilized purified receptors and what are the main subsequent molecular pharmacology analyses that were performed using this strategy.

Keywords

GPCR Amphipol G Protein Arrestin Ligand 

Abbreviations

5HT4(a)

5-Hydroxytryptamine receptor 4

12-HHT

12S-Hydroxyheptadeca-5Z, 8E,10E-trienoic acid

A8-35

Polyacrylate-based amphipol A8-35

AVP

Arginine-vasopressin

BLT1

Leukotriene B4 receptor 1

BLT2

Leukotriene B4 receptor 2

CB1

Cannabinoid receptor 1

CRINEPT

Cross-correlated relaxation-enhanced polarization transfer

CXCR1

C-X-C chemokine receptor 1

DDM

Dodecyl-β-D-maltopyranoside

FRET

Fluorescence resonance energy transfer

FomA

Outer membrane protein A from Fusobacterium nucleatum

GHS-R1a

Ghrelin receptor type 1

GPCR

G protein-coupled receptor

IB

Inclusion bodies

LRET

Luminescence resonance energy transfer

LTB4

Leukotriene B4

MNG

Maltose-neopentylglucose

OmpA

Outer membrane protein A from Escherichia coli

NaPol

Non-ionic amphipol

NMR

Nuclear magnetic resonance

Sf9

Spodoptera frugiperda

V2R

Vasopressin receptor 2

Notes

Acknowledgments

We are particularly indebted to J.-L. Popot (IBPC, Paris) for his invaluable contribution to all this work. We also wish to thank L. Catoire and M. Zoonens (IBPC, Paris) for helpful discussions. This work was supported by CNRS and National Agency of Research Grants ANR 06-BLAN-0087, ANR-10-BLAN-1208 and PCV08_323163.

References

  1. Andrell J, Tate CG (2013) Overexpression of membrane proteins in mammalian cells for structural studies. Mol Membr Biol 30(1):52–63CrossRefGoogle Scholar
  2. Arcemisbehere L, Sen T, Boudier L, Balestre MN, Gaibelet G, Detouillon E, Orcel H, Mendre C, Rahmeh R, Granier S, Vives C, Fieschi F, Damian M, Durroux T, Baneres JL, Mouillac B (2010) Leukotriene BLT2 receptor monomers activate the G(i2) GTP-binding protein more efficiently than dimers. J Biol Chem 285(9):6337–6347CrossRefGoogle Scholar
  3. Baneres JL, Popot JL, Mouillac B (2011) New advances in production and functional folding of G-protein-coupled receptors. Trends Biotechnol 29(7):314–322CrossRefGoogle Scholar
  4. Bazzacco P, Billon-Denis E, Sharma KS, Catoire LJ, Mary S, Le Bon C, Point E, Baneres JL, Durand G, Zito F, Pucci B, Popot JL (2012) Nonionic homopolymeric amphipols: application to membrane protein folding, cell-free synthesis, and solution nuclear magnetic resonance. Biochemistry 51(7):1416–1430CrossRefGoogle Scholar
  5. Catoire LJ, Damian M, Giusti F, Martin A, van Heijenoort C, Popot JL, Guittet E, Baneres JL (2010) Structure of a GPCR ligand in its receptor-bound state: leukotriene B4 adopts a highly constrained conformation when associated to human BLT2. J Am Chem Soc 132(26):9049–9057CrossRefGoogle Scholar
  6. Catoire LJ, Damian M, Baaden M, Guittet E, Baneres JL (2011) Electrostatically-driven fast association and perdeuteration allow detection of transferred cross-relaxation for G protein-coupled receptor ligands with equilibrium dissociation constants in the high-to-low nanomolar range. J Biomol NMR 50(3):191–195CrossRefGoogle Scholar
  7. Dahmane T, Damian M, Mary S, Popot JL, Baneres JL (2009) Amphipol-assisted in vitro folding of G protein-coupled receptors. Biochemistry 48(27):6516–6521CrossRefGoogle Scholar
  8. Dahmane T, Rappaport F, Popot JL (2013) Amphipol-assisted folding of bacteriorhodopsin in the presence or absence of lipids: functional consequences. Eur Biophys J 42(2–3):85–101CrossRefGoogle Scholar
  9. Damian M, Martin A, Mesnier D, Pin JP, Baneres JL (2006) Asymmetric conformational changes in a GPCR dimer controlled by G-proteins. EMBO J 25(24):5693–5702CrossRefGoogle Scholar
  10. Damian M, Marie J, Leyris JP, Fehrentz JA, Verdie P, Martinez J, Baneres JL, Mary S (2012) High constitutive activity is an intrinsic feature of ghrelin receptor protein: a study with a functional monomeric GHS-R1a receptor reconstituted in lipid discs. J Biol Chem 287(6):3630–3641CrossRefGoogle Scholar
  11. Della Pia EA, Holm JV, Lloret N, Le Bon C, Popot JL, Zoonens M, Nygard J, Martinez KL (2014) A step closer to membrane protein multiplexed nanoarrays using biotin-doped polypyrrole. ACS Nano 8(2):1844–1853CrossRefGoogle Scholar
  12. Deupi X, Standfuss J, Schertler G (2012) Conserved activation pathways in G-protein-coupled receptors. Biochem Soc Trans 40(2):383–388CrossRefGoogle Scholar
  13. Giusti F, Rieger J, Catoire LJ, Qian S, Calabrese AN, Watkinson TG, Casiraghi M, Radford SE, Ashcroft AE, Popot JL (2014) Synthesis, characterization and applications of a perdeuterated amphipol. J Membr Biol 36(7):1–6Google Scholar
  14. Inagaki S, Ghirlando R, White JF, Gvozdenovic-Jeremic J, Northup JK, Grisshammer R (2012) Modulation of the interaction between neurotensin receptor NTS1 and Gq protein by lipid. J Mol Biol 417(1–2):95–111CrossRefGoogle Scholar
  15. Irannejad R, Tomshine JC, Tomshine JR, Chevalier M, Mahoney JP, Steyaert J, Rasmussen SG, Sunahara RK, El-Samad H, Huang B, von Zastrow M (2013) Conformational biosensors reveal GPCR signalling from endosomes. Nature 495(7442):534–538CrossRefGoogle Scholar
  16. Kaya AI, Thaker TM, Preininger AM, Iverson TM, Hamm HE (2011) Coupling efficiency of rhodopsin and transducin in bicelles. Biochemistry 50(15):3193–3203CrossRefGoogle Scholar
  17. Kenakin T (2011) Functional selectivity and biased receptor signaling. J Pharmacol Exp Therap 336(2):296–302CrossRefGoogle Scholar
  18. Lagerstrom MC, Schioth HB (2008) Structural diversity of G protein-coupled receptors and significance for drug discovery. Nat Rev Drug Discovery 7(4):339–357CrossRefGoogle Scholar
  19. Lang S, Spratt DE, Guillemette JG, Palmer M (2005) Dual-targeted labeling of proteins using cysteine and selenomethionine residues. Anal Biochem 342(2):271–279CrossRefGoogle Scholar
  20. Le Bon C, Popot JL, Giusti F (2014) Labeling and functionalizing amphipols for biological applications. J Memb Biol 288(37):26419–26429Google Scholar
  21. Luttrell LM, Kenakin TP (2011) Refining efficacy: allosterism and bias in G protein-coupled receptor signaling. Methods Mol Biol 756:3–35CrossRefGoogle Scholar
  22. Mary S, Damian M, Louet M, Floquet N, Fehrentz JA, Marie J, Martinez J, Baneres JL (2012) Ligands and signaling proteins govern the conformational landscape explored by a G protein-coupled receptor. Proc Natl Acad Sci USA 109(21):8304–8309CrossRefGoogle Scholar
  23. Mary S, Fehrentz JA, Damian M, Gaibelet G, Orcel H, Verdie P, Mouillac B, Martinez J, Marie J, Baneres JL (2013) Heterodimerization with its splice variant blocks the ghrelin receptor 1a in a non-signaling conformation: a study with a purified heterodimer assembled into lipid discs. J Biol Chem 288(34):24656–24665CrossRefGoogle Scholar
  24. Park SH, Casagrande F, Chu M, Maier K, Kiefer H, Opella SJ (2012a) Optimization of purification and refolding of the human chemokine receptor CXCR1 improves the stability of proteoliposomes for structure determination. Biochim Biophys Acta 3:584–591CrossRefGoogle Scholar
  25. Park SH, Das BB, Casagrande F, Tian Y, Nothnagel HJ, Chu M, Kiefer H, Maier K, De Angelis AA, Marassi FM, Opella SJ (2012b) Structure of the chemokine receptor CXCR1 in phospholipid bilayers. Nature 491(7426):779–783CrossRefGoogle Scholar
  26. Planchard N, Point E, Dahmane T, Giusti F, Renault M, Le Bon C, Durand G, Milon A, Guittet E, Zoonens M, Popot JL, Catoire LJ (2014) The use of amphipols for solution NMR studies of membrane proteins: advantages and constraints as compared to other solubilizing media. J Memb Biol 63(9):11–18Google Scholar
  27. Pocanschi CL, Dahmane T, Gohon Y, Rappaport F, Apell HJ, Kleinschmidt JH, Popot JL (2006) Amphipathic polymers: tools to fold integral membrane proteins to their active form. Biochemistry 45(47):13954–13961CrossRefGoogle Scholar
  28. Pocanschi CL, Popot JL, Kleinschmidt JH (2013) Folding and stability of outer membrane protein A (OmpA) from Escherichia coli in an amphipathic polymer, amphipol A8-35. Eur Biophy J 42(2–3):103–118CrossRefGoogle Scholar
  29. Popot JL (2010) Amphipols, nanodiscs, and fluorinated surfactants: three nonconventional approaches to studying membrane proteins in aqueous solutions. Annu Rev Biochem 79:737–775CrossRefGoogle Scholar
  30. Rahmeh R, Damian M, Cottet M, Orcel H, Mendre C, Durroux T, Sharma KS, Durand G, Pucci B, Trinquet E, Zwier JM, Deupi X, Bron P, Baneres JL, Mouillac B, Granier S (2012) Structural insights into biased G protein-coupled receptor signaling revealed by fluorescence spectroscopy. Proc Natl Acad Sci USA 109(17):6733–6738CrossRefGoogle Scholar
  31. Schimmer S, Lindner D, Schmidt P, Beck-Sickinger AG, Huster D, Rudolph R (2010) Functional characterization of the in vitro folded human y(1) receptor in lipid environment. Protein Pept Lett 17(5):605–609CrossRefGoogle Scholar
  32. Schlinkmann KM, Pluckthun A (2013) Directed evolution of G-protein-coupled receptors for high functional expression and detergent stability. Methods Enzymol 520:67–97CrossRefGoogle Scholar
  33. Steyaert J, Kobilka BK (2011) Nanobody stabilization of G protein-coupled receptor conformational states. Curr Opin Struct Biol 21(4):567–572CrossRefGoogle Scholar
  34. Tate CG, Schertler GF (2009) Engineering G protein-coupled receptors to facilitate their structure determination. Curr Opin Struct Biol 19(4):386–395CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Sophie Mary
    • 1
  • Marjorie Damian
    • 1
  • Rita Rahmeh
    • 2
  • Bernard Mouillac
    • 2
  • Jacky Marie
    • 1
  • Sébastien Granier
    • 2
  • Jean-Louis Banères
    • 1
    Email author
  1. 1.Faculté de Pharmacie, Institut des Biomolécules Max Mousseron (IBMM), CNRS UMR 5247Université Montpellier 1 et 2Montpellier Cedex 5France
  2. 2.Institut de Génomique Fonctionnelle (IGF), CNRS UMR 5203, INSERM U661Université Montpellier 1 et 2Montpellier Cedex 05France

Personalised recommendations