Advertisement

The Journal of Membrane Biology

, Volume 247, Issue 6, pp 461–468 | Cite as

Phosphoinositide 3-Kinase Pathway Mediates Early Aldosterone Action on Morphology and Epithelial Sodium Channel in Mammalian Renal Epithelia

  • Yuan Zhou
  • Xuewei Chen
  • Xiao Liu
  • Hujie Lu
  • Ying Li
  • Hui Zhu
  • Gaihong An
  • Na Zhang
  • Jianning Zhang
  • Qiang Ma
  • Yanjun Zhang
Article
  • 268 Downloads

Abstract

Involvement of phosphoinositide 3-kinases (PI3Ks) in early aldosterone action on epithelial sodium channel (ENaC) in mammalian renal epithelia was investigated by hopping probe ion conductance microscopy combined with patch-clamping in this study. Aldosterone treatment enlarged the cell volume and elevated the apical membrane of renal mpkCCDc14 epithelia, which resulted in enhancing the open probability of ENaC. Inhibition of PI3K pathway by LY294002 obviously suppressed these aldosterone-induced changes in both cell morphology and ENaC activity. These results indicated the important role of PI3K pathway in early aldosterone action and the close relationship between cell morphology and ENaC activity in mammalian renal epithelia.

Keywords

ENaC CCD HPICM SICM PI3K 

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No.30971184; 81271361; 81330029; 31300828), the International Science & Technology Cooperation Program of China (No.2011DFG33430), and Tianjin Natural Science Foundation of China (No.13JCYBJC21900; 12JCYBJC31500).

Conflict of interest

There are no conflicts of interest.

References

  1. Althaus M, Bogdan R, Clauss WG, Fronius M (2007) Mechano-sensitivity of epithelial sodium channels (ENaCs): laminar shear stress increases ion channel open probability. FASEB J 21:2389–2399CrossRefPubMedGoogle Scholar
  2. Awayda MS, Subramanyam M (1998) Regulation of the epithelial Na+ channel by membrane tension. J Gen Physiol 112:97–111PubMedCentralCrossRefPubMedGoogle Scholar
  3. Bens M, Vallet V, Cluzeaud F, Pascual-Letallec L, Kahn A, Rafestin-Oblin ME, Rossier BC, Vandewalle A (1999) Corticosteroid-dependent sodium transport in a novel immortalized mouse collecting duct principal cell line. J Am Soc Nephrol 10:923–934PubMedGoogle Scholar
  4. Berdiev BK, Prat AG, Cantiello HF, Ausiello DA, Fuller CM, Jovov B, Benos DJ, Ismailov II (1996) Regulation of epithelial sodium channels by short actin filaments. J Biol Chem 271:17704–17710CrossRefPubMedGoogle Scholar
  5. Blazer-Yost BL, Päunescu TG, Helman S, Lee KD, Vlahos CJ (1999) Phosphoinositide 3-kinase is required for aldosterone-regulated sodium reabsorption. Am J Physiol 277:C531–C536PubMedGoogle Scholar
  6. Cantiello HF (1995) Role of the actin cytoskeleton on epithelial Na+ channel regulation. Kidney Int 48:970–984CrossRefPubMedGoogle Scholar
  7. Carpenter CL, Cantley LC (1996) Phosphoinositide kinases. Curr Opin Cell Biol 8:153–158CrossRefPubMedGoogle Scholar
  8. Chen CL, Wang Y, Sesaki H, Iijima M (2012) Myosin I links PIP3 signaling to remodeling of the actin cytoskeleton in chemotaxis. Sci Signal 5:ra10PubMedCentralPubMedGoogle Scholar
  9. Chen X, Zhu H, Liu X, Lu H, Li Y, Wang J, Liu H, Zhang J, Ma Q, Zhang Y (2013) Characterization of two mammalian cortical collecting duct cell lines with hopping probe ion conductance microscopy. J Membr Biol 246:7–11CrossRefPubMedGoogle Scholar
  10. Dooley R, Harvey BJ, Thomas W (2012) Non-genomic actions of aldosterone: from receptors and signals to membrane targets. Mol Cell Endocrinol 350:223–234CrossRefPubMedGoogle Scholar
  11. Eaton DC, Malik B, Saxena NC, Al-Khalili OK, Yue G (2001) Mechanisms of aldosterone’s action on epithelial Na+ transport. J Membr Biol 184:313–319CrossRefPubMedGoogle Scholar
  12. Fronius M, Clauss WG (2008) Mechano-sensitivity of ENaC: may the (shear) force be with you. Pflug Arch 455:775–785CrossRefGoogle Scholar
  13. Garty H, Palmer LG (1997) Epithelial sodium channels: function, structure, and regulation. Physiol Rev 77:359–396PubMedGoogle Scholar
  14. Gorelik J, Zhang Y, Sánchez D, Shevchuk A, Frolenkov G, Lab M, Klenerman D, Edwards C, Korchev Y (2005) Aldosterone acts via an ATP autocrine/paracrine system: the Edelman ATP hypothesis revisited. Proc Natl Acad Sci USA 102:15000–15005PubMedCentralCrossRefPubMedGoogle Scholar
  15. Helms MN, Liu L, Liang YY, Al-Khalili O, Vandewalle A, Saxena S, Eaton DC, Ma HP (2005) Phosphatidylinositol 3,4,5-trisphosphate mediates aldosterone stimulation of epithelial sodium channel (ENaC) and interacts with gamma-ENaC. J Biol Chem 280:40885–40891CrossRefPubMedGoogle Scholar
  16. Ivanov AI, Parkos CA, Nusrat A (2010) Cytoskeletal regulation of epithelial barrier function during inflammation. Am J Pathol 177:512–524PubMedCentralCrossRefPubMedGoogle Scholar
  17. Kemendy AE, Kleyman TR, Eaton DC (1992) Aldosterone alters the open probability of amiloride-blockable sodium channels in A6 epithelia. Am J Physiol 263:C825–C837PubMedGoogle Scholar
  18. Korchev YE, Gorelik J, Lab MJ, Sviderskaya EV, Johnston CL, Coombes CR, Vodyanoy I, Edwards CR (2000) Cell volume measurement using scanning ion conductance microscopy. Biophys J 78:451–457PubMedCentralCrossRefPubMedGoogle Scholar
  19. Ma HP (2011) Hydrogen peroxide stimulates the epithelial sodium channel through a phosphatidylinositide 3-kinase-dependent pathway. J Biol Chem 286:32444–32453PubMedCentralCrossRefPubMedGoogle Scholar
  20. Ma HP, Saxena S, Warnock DG (2001) Anionic phospholipids regulate native and expressed epithelial sodium channel (ENaC). J Biol Chem 277:7641–7644CrossRefGoogle Scholar
  21. May A, Puoti A, Gaeggeler HP, Horisberger JD, Rossier BC (1997) Early effect of aldosterone on the rate of synthesis of the epithelial sodium channel alpha subunit in A6 renal cells. J Am Soc Nephrol 8:1813–1822PubMedGoogle Scholar
  22. Novak P, Li C, Shevchuk AI, Stepanyan R, Caldwell M, Hughes S, Smart TG, Gorelik J, Ostanin VP, Lab MJ, Moss GW, Frolenkov GI, Klenerman D, Korchev YE (2009) Nanoscale live-cell imaging using hopping probe ion conductance microscopy. Nat Methods 6:279–281PubMedCentralCrossRefPubMedGoogle Scholar
  23. Palmer LG, Patel A, Frindt G (2012) Regulation and dysregulation of epithelial Na+ channels. Clin Exp Nephrol 16:35–43CrossRefPubMedGoogle Scholar
  24. Paunescu TG, Blazer-Yost BL, Vlahos CJ, Helman SI (2000) LY-294002-inhibitable PI 3-kinase and regulation of baseline rates of Na(+) transport in A6 epithelia. Am J Physiol Cell Physiol 279:C236–C247PubMedGoogle Scholar
  25. Pochynyuk O, Staruschenko A, Tong Q, Medina J, Stockand JD (2005) Identification of a functional phosphatidylinositol 3,4,5-trisphosphate binding site in the epithelial Na+ channel. J Biol Chem 280:37565–37571CrossRefPubMedGoogle Scholar
  26. Pochynyuk O, Bugaj V, Stockand JD (2008) Physiologic regulation of the epithelial sodium channel by phosphatidylinositides. Curr Opin Nephrol Hypertens 17:533–540PubMedCentralCrossRefPubMedGoogle Scholar
  27. Record RD, Froelich LL, Vlahos CJ, Blazer-Yost BL (1998) Phosphatidylinositol 3-kinase activation is required for insulin-stimulated sodium transport in A6 cells. Am J Physiol 274:E611–E617PubMedGoogle Scholar
  28. Rossier BC (2003) The epithelial sodium channel (ENaC): new insights into ENaC gating. Pflug Arch 446:314–316Google Scholar
  29. Rozansky DJ, Wang J, Doan N, Purdy T, Faulk T, Bhargava A, Dawson K, Pearce D (2002) Hypotonic induction of SGK1 and Na+ transport in A6 cells. Am J Physiol Renal Physiol 283:F105–F113CrossRefPubMedGoogle Scholar
  30. Staruschenko A, Patel P, Tong Q, Medina JL, Stockand JD (2004) Ras activates the epithelial Na(+) channel through phosphoinositide 3-OH kinase signaling. J Biol Chem 279:37771–37778CrossRefPubMedGoogle Scholar
  31. Staruschenko A, Pochynyuk O, Vandewalle A, Bugaj V, Stockand JD (2007) Acute regulation of the epithelial Na+ channel by phosphatidylinositide 3-OH kinase signaling in native collecting duct principal cells. J Am Soc Nephrol 18:1652–1661CrossRefPubMedGoogle Scholar
  32. Tong Q, Gamper N, Medina JL, Shapiro MS, Stockand JD (2004) Direct activation of the epithelial Na+ channel by phosphatidylinositol 3,4,5-trisphosphate and phosphatidylinositol 3,4-bisphosphate produced by phosphoinositide 3-OH kinase. J Biol Chem 279:22654–22663CrossRefPubMedGoogle Scholar
  33. Wang J, Knight ZA, Fiedler D, Williams O, Shokat KM, Pearce D (2008) Activity of the p110-subunit of phosphatidylinositol-3-kinase is required for activation of epithelial sodium transport. Am J Physiol Renal Physiol 295:F843–F850PubMedCentralCrossRefPubMedGoogle Scholar
  34. Yang X, Liu X, Zhang X, Lu H, Zhang J, Zhang Y (2011) Investigation of morphological and functional changes during neuronal differentiation of PC12 cells by combined hopping probe ion conductance microscopy and patch-clamp technique. Ultramicroscopy 111:1417–1422CrossRefPubMedGoogle Scholar
  35. Yang X, Liu X, Lu H, Zhang X, Ma L, Gao R, Zhang Y (2012) Real-time investigation of acute toxicity of ZnO nanoparticles on human lung epithelia with hopping probe ion conductance microscopy. Chem Res Toxicol 25:297–304CrossRefPubMedGoogle Scholar
  36. Zhang Y, Gorelik J, Sanchez D, Shevchuk A, Lab M, Vodyanoy I, Klenerman D, Edwards C, Korchev Y (2005) Scanning ion conductance microscopy reveals how a functional renal epithelial monolayer maintains its integrity. Kidney Int 68:1071–1077CrossRefPubMedGoogle Scholar
  37. Zhang Y, Sanchez D, Gorelik J, Klenerman D, Lab M, Edwards C, Korchev Y (2007) Basolateral P2X4-like receptors regulate the extracellular ATP-stimulated epithelial Na+ channel activity in renal epithelia. Am J Physiol Renal Physiol 292:F1734–F1740CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Neurosurgery, Tianjin Medical University General Hospital; Tianjin Neurological Institute; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous SystemMinistry of Education; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous SystemTianjinChina
  2. 2.Department of Occupational HygieneInstitute of Health and Environmental MedicineTianjinChina
  3. 3.Nanomedicine LaboratoryChina National Academy of Nanotechnology & EngineeringTianjinChina
  4. 4.Medicine DivisionImperial College LondonLondonUK

Personalised recommendations