Advertisement

The Journal of Membrane Biology

, Volume 247, Issue 4, pp 345–355 | Cite as

An Investigation into Membrane Bound Redox Carriers Involved in Energy Transduction Mechanism in Brevibacterium linens DSM 20158 with Unsequenced Genome

  • Khadija Shabbiri
  • Catherine H. Botting
  • Ahmad Adnan
  • Matthew Fuszard
  • Shahid Naseem
  • Safeer Ahmed
  • Shahida Shujaat
  • Quratulain Syed
  • Waqar Ahmad
Article

Abstract

Brevibacterium linens (B. linens) DSM 20158 with an unsequenced genome can be used as a non-pathogenic model to study features it has in common with other unsequenced pathogens of the same genus on the basis of comparative proteome analysis. The most efficient way to kill a pathogen is to target its energy transduction mechanism. In the present study, we have identified the redox protein complexes involved in the electron transport chain of B. linens DSM 20158 from their clear homology with the shot-gun genome sequenced strain BL2 of B. linens by using the SDS–Polyacrylamide gel electrophoresis coupled with nano LC–MS/MS mass spectrometry. B. linens is found to have a branched electron transport chain (Respiratory chain), in which electrons can enter the respiratory chain either at NADH (Complex I) or at Complex II level or at the cytochrome level. Moreover, we are able to isolate, purify, and characterize the membrane bound Complex II (succinate dehydrogenase), Complex III (menaquinone cytochrome c reductase cytochrome c subunit, Complex IV (cytochrome c oxidase), and Complex V (ATP synthase) of B. linens strain DSM 20158.

Keywords

Redox proteins Cytochromes Isolation Purification Characterization Proteomics 

Notes

Acknowledgments

We would like to thank the Wellcome Trust for funding the purchase of the ABSciex QStar XL mass spectrometer and The Higher Education Commission (HEC), Pakistan is thanked for scholarship (IRSIP) funding to KS.

References

  1. Ahmad W, Shabbiri K, Adnan A (2012) Exploration of respiratory chain of Nocardia asteroides: purification of succinate quinone oxidoreductase. J Membr Biol 245:89–95CrossRefPubMedGoogle Scholar
  2. Bott M, Niebisch A (2003) The respiratory chain of Corynebacterium glutamicum. J Biotechnol 104:129–153CrossRefPubMedGoogle Scholar
  3. Connelly JL, Morrison M, Stotz E (1958) Hemins of beef heart muscle. J Biol Chem 233:743–747PubMedGoogle Scholar
  4. Das A, Hugenholtz J, Van Halbeek H, Ljungdahl LG (1989) Structure and function of a menaquinone involved in electron transport in membranes of Clostridium thermoautotrophicum and Clostridium thermoaceticum. J Bacteriol 171:5823–5829PubMedCentralPubMedGoogle Scholar
  5. Dunphy PJ, Brodie AF (1971) The structure and function of quinones in respiratory metabolism. Methods Enzymol 18:407–461CrossRefGoogle Scholar
  6. Garcia-Horsman JA, Barquera B, Rumbley J, Ma J, Gennis RB (1994) The superfamily of heme-copper respiratory oxidases. J Bacteriol 176:5587–5600PubMedCentralPubMedGoogle Scholar
  7. Hahne H, Wolff S, Hecker M, Becher D (2008) From complementarity to comprehensiveness–targeting the membrane proteome of growing Bacillus subtilis by divergent approaches. Proteomics 8:4123–4136CrossRefPubMedGoogle Scholar
  8. Hederstedt L (2002) Succinate: quinone oxidoreductase in the bacteria Paracoccus denitrificans and Bacillus subtilis. Biochim Biophys Acta 1553:74–83CrossRefPubMedGoogle Scholar
  9. Kabashima Y, Sakamoto J (2011) Purification and biochemical properties of a cytochrome bc complex from the aerobic hyperthermophilic archaeon Aeropyrum pernix. BMC Microbiol 11:52PubMedCentralCrossRefPubMedGoogle Scholar
  10. Kroger A, Biel S, Simon J, Gross R, Unden G, Lancaster CR (2002) Fumarate respiration of Wolinella succinogenes: enzymology, energetics and coupling mechanism. Biochim Biophys Acta 1553:23–38CrossRefPubMedGoogle Scholar
  11. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685CrossRefPubMedGoogle Scholar
  12. Lauraeus M, Haltia T, Saraste M, Wikstrom M (1991) Bacillus subtilis expresses two kinds of haem-A-containing terminal oxidases. Eur J Biochem 197:699–705CrossRefPubMedGoogle Scholar
  13. Lucas MF, Rousseau DL, Guallar V (2011) Electron transfer pathways in cytochrome c oxidase. Biochim Biophys Acta 1807:1305–1313PubMedCentralCrossRefPubMedGoogle Scholar
  14. McEwen JE, Cameron VL, Poyton RO (1985) Rapid method for isolation and screening of cytochrome c oxidase-deficient mutants of Saccharomyces cerevisiae. J Bacteriol 161:831–835PubMedCentralPubMedGoogle Scholar
  15. Mooser D, Maneg O, MacMillan F, Malatesta F, Soulimane T, Ludwig B (2006) The menaquinol-oxidizing cytochrome bc complex from Thermus thermophilus: protein domains and subunits. Biochim Biophys Acta 1757:1084–1095CrossRefPubMedGoogle Scholar
  16. Nicholls DG, Ferguson SJ (2002) Bioenergetics 3. Academic Press, AmsterdamGoogle Scholar
  17. Oberreuter H, Charzinski J, Scherer S (2002) Intraspecific diversity of Brevibacterium linens, Corynebacterium glutamicum and Rhodococcus erythropolis based on partial 16S rDNA sequence analysis and Fourier-transform infrared (FT-IR) spectroscopy. Microbiology 148:1523–1532CrossRefPubMedGoogle Scholar
  18. Pereira MM, Carita JN, Teixeira M (1999) Membrane-bound electron transfer chain of the thermohalophilic bacterium Rhodothermus marinus: a novel multihemic cytochrome bc, a new complex III. Biochemistry 38:1268–1275CrossRefPubMedGoogle Scholar
  19. Pereira MM, Santana M, Teixeira M (2001) A novel scenario for the evolution of haem-copper oxygen reductases. Biochim Biophys Acta 1505:185–208CrossRefPubMedGoogle Scholar
  20. Pierson HE, Uhlemann EM, Dmitriev OY (2011) Interaction with monomeric subunit c drives insertion of ATP synthase subunit a into the membrane and primes a-c complex formation. J Biol Chem 286:38583–38591PubMedCentralCrossRefPubMedGoogle Scholar
  21. Qureshi MH, Fujiwara T, Fukumori Y (1996) Succinate: quinone oxidoreductase (complex II) containing a single heme b in facultative alkaliphilic Bacillus sp. strain YN-2000. J Bacteriol 178:3031–3036PubMedCentralPubMedGoogle Scholar
  22. Qureshi MH, Kato C, Horikoshi K (1998a) Purification of a ccb-type quinol oxidase specifically induced in a deep-sea barophilic bacterium, Shewanella sp. strain DB-172F. Extremophiles 2:93–99CrossRefPubMedGoogle Scholar
  23. Qureshi M, Kato K, Horikoshi K (1998b) Purification of two pressure-regulated c-type cytochromes from a deep-sea barophilic bacterium, Shewanella sp. strain DB-172F. FEMS Microbiol Lett 161:301–309CrossRefGoogle Scholar
  24. Rattray FP, Fox PF (1999) Aspects of enzymology and biochemical properties of Brevibacterium linens relevant to cheese ripening: a review. J Dairy Sci 82:891–909CrossRefPubMedGoogle Scholar
  25. Schilling B, Murray J, Yoo CB, Row RH, Cusack MP, Capaldi RA, Gibson BW (2006) Proteomic analysis of succinate dehydrogenase and ubiquinol-cytochrome c reductase (Complex II and III) isolated by immunoprecipitation from bovine and mouse heart mitochondria. Biochim Biophys Acta 1762:213–222CrossRefPubMedGoogle Scholar
  26. Schirawski J, Unden G (1998) Menaquinone-dependent succinate dehydrogenase of bacteria catalyzes reversed electron transport driven by the proton potential. Eur J Biochem 257:210–215CrossRefPubMedGoogle Scholar
  27. Sekine S, Nureki O, Shimada A, Vassylyev DG, Yokoyama S (2001) Structural basis for anticodon recognition by discriminating glutamyl-tRNA synthetase. Nat Struct Biol 8:203–206CrossRefPubMedGoogle Scholar
  28. Shabbiri K, Ahmad W, Syed Q, Adnan A (2010) Isolation and purification of complex II from proteus mirabilis strain ATCC 29245. Braz J Microbiol 41:796–804PubMedCentralCrossRefPubMedGoogle Scholar
  29. Shabbiri K, Botting CH, Adnan A, Fuszard M (2013) Charting the cellular and extracellular proteome analysis of Brevibacterium linens DSM 20158 with unsequenced genome by mass spectrometry-driven sequence similarity searches. J Proteomics 83:99–118CrossRefPubMedGoogle Scholar
  30. Shevchenko A, Wilm M, Vorm O, Mann M (1996) Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem 68:850–858CrossRefPubMedGoogle Scholar
  31. Shvinka Iu E, Viestur UE, Toma MK (1979) Alternative oxidation pathways in the respiratory chain of Brevibacterium flavum. Mikrobiologiia 48:10–16PubMedGoogle Scholar
  32. Tomashek JJ, Glagoleva OB, Brusilow WS (2004) The Escherichia coli F1F0 ATP synthase displays biphasic synthesis kinetics. J Biol Chem 279:4465–4470CrossRefPubMedGoogle Scholar
  33. Waldeck AR, Stowell MH, Lee HK, Hung SC, Matsson M, Hederstedt L, Ackrell BA, Chan SI (1997) Electron paramagnetic resonance studies of succinate: ubiquinone oxidoreductase from Paracoccus denitrificans. Evidence for a magnetic interaction between the 3Fe–4S cluster and cytochrome b. J Biol Chem 272:19373–19382CrossRefPubMedGoogle Scholar
  34. White D (2007) The physiology and biochemistry of prokaryotes. Oxford University Press, New York, OxfordGoogle Scholar
  35. Yu J, Hederstedt L, Piggot PJ (1995) The cytochrome bc complex (menaquinone: cytochrome c reductase) in Bacillus subtilis has a nontraditional subunit organization. J Bacteriol 177:6751–6760PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Khadija Shabbiri
    • 1
    • 2
  • Catherine H. Botting
    • 2
  • Ahmad Adnan
    • 1
  • Matthew Fuszard
    • 2
  • Shahid Naseem
    • 1
  • Safeer Ahmed
    • 3
  • Shahida Shujaat
    • 4
  • Quratulain Syed
    • 5
  • Waqar Ahmad
    • 6
  1. 1.Department of ChemistryGC University LahoreLahorePakistan
  2. 2.Biomedical Sciences Research ComplexUniversity of St. AndrewsFifeScotland, UK
  3. 3.Department of ChemistryQuaid-i-Azam UniversityIslamabadPakistan
  4. 4.Department of ChemistryLahore College for Women UniversityLahorePakistan
  5. 5.Pakistan Council of Scientific and Industrial Research Labs ComplexLahorePakistan
  6. 6.School of Biological SciencesThe University of QueenslandBrisbaneAustralia

Personalised recommendations