Advertisement

The Journal of Membrane Biology

, Volume 247, Issue 4, pp 309–318 | Cite as

β3-Adrenergic Regulation of L-Type Ca2+ Current and Force of Contraction in Human Ventricle

  • Rimantas Treinys
  • Danguolė Zablockaitė
  • Vida Gendvilienė
  • Jonas Jurevičius
  • V. Arvydas SkeberdisEmail author
Original Article

Abstract

β3-Adrenergic receptor (β3-AR) is expressed in human atrial and ventricular tissues. Recently, we have demonstrated that it was involved in the activation of L-type Ca2+ current (I Ca,L) in human atrial myocytes and the force of contraction of human atrial trabeculae. In the present study, we examined the effect of β3-AR agonist CGP12177 which also is a β1-AR/β2-AR antagonist on I Ca,L in human ventricular myocytes (HVMs) and the force of contraction of human ventricular trabeculae. CGP12177 stimulated I Ca,L in HVMs with high potency but much lower efficacy than isoprenaline. The β3-AR antagonist L-748,337 inhibited the effect of CGP12177. CGP12177 and L748,337 competed selectively on β3-ARs because L748,337 had no effect on isoprenaline-induced stimulation of I Ca,L, while CGP12177 completely blocked the effect of isoprenaline. The activation of β3-ARs by CGP12177 does not involve the activation of Gi proteins because CGP12177 had no effect on forskolin-induced stimulation of I Ca,L. CGP12177 had no effect on the force of contraction of human ventricular trabeculae. L-NMMA, an inhibitor of NO synthase, and IBMX, a nonselective inhibitor of phosphodiesterases, did not potentiate the effect of CGP12177 either on contraction of human ventricular trabeculae or on I Ca,L in HVMs. We conclude that in human ventricles β3-AR activation has no inotropic effect, while it slightly increases I Ca,L. In contrast to human atrium, the activation of β3-ARs in human ventricle is not accompanied by increased activity of phosphodiesterases.

Keywords

β3-Adrenergic receptors Human ventricle L-type Ca2+ channel current Contraction force 

Abbreviations

β-AR

β-Adrenergic receptor

ICa,L

L-type Ca2+ channel current

HAM

Human atrial myocyte

HVM

Human ventricular myocyte

IBMX

Isobutylmethylxanthine

L-NMMA

NG-monomethyl-l-arginine

CFTR

Cystic fibrosis transmembrane conductance regulator

PDE

Phosphodiesterase

NOS

Nitric oxide synthase

Notes

Acknowledgments

This work was supported by the European Social Fund, the Project Code Number VP1-3.1.-ŠMM-08-K-01-022. We thank Antanas Navalinskas for skillful technical assistance, Valeryia Mikalayeva for preparation of the cells, and Dr. Rodolphe Fischmeister for valuable discussions.

Conflict of interest

The authors have declared that no conflict of interest exists.

References

  1. Abi-Gerges A, Richter W, Lefebvre F, Mateo P, Varin A, Heymes C, Samuel JL, Lugnier C, Conti M, Fischmeister R, Vandecasteele G (2009) Decreased expression and activity of cAMP phosphodiesterases in cardiac hypertrophy and its impact on beta-adrenergic cAMP signals. Circ Res 105:784–792PubMedCentralCrossRefPubMedGoogle Scholar
  2. Amour J, Loyer X, Le Guen M, Mabrouk N, David JS, Camors E, Carusio N, Vivien B, Andriantsitohaina R, Heymes C, Riou B (2007) Altered contractile response due to increased beta3-adrenoceptor stimulation in diabetic cardiomyopathy: the role of nitric oxide synthase 1-derived nitric oxide. Anesthesiology 107:452–460CrossRefPubMedGoogle Scholar
  3. Baker JG (2005) The selectivity of beta-adrenoceptor antagonists at the human beta1, beta2 and beta3 adrenoceptors. Br J Pharmacol 144:317–322PubMedCentralCrossRefPubMedGoogle Scholar
  4. Bers DM (2002) Cardiac excitation–contraction coupling. Nature 415:198–205CrossRefPubMedGoogle Scholar
  5. Birenbaum A, Tesse A, Loyer X, Michelet P, Andriantsitohaina R, Heymes C, Riou B, Amour J (2008) Involvement of beta 3-adrenoceptor in altered beta-adrenergic response in senescent heart: role of nitric oxide synthase 1-derived nitric oxide. Anesthesiology 109:1045–1053CrossRefPubMedGoogle Scholar
  6. Brette F, Leroy J, Le Guennec JY, Salle L (2006) Ca2+ currents in cardiac myocytes: old story, new insights. Prog Biophys Mol Biol 91:1–82CrossRefPubMedGoogle Scholar
  7. Brodde OE, Bruck H, Leineweber K (2006) Cardiac adrenoceptors: physiological and pathophysiological relevance. J Pharmacol Sci 100:323–337CrossRefPubMedGoogle Scholar
  8. Chamberlain PD, Jennings KH, Paul F, Cordell J, Berry A, Holmes SD, Park J, Chambers J, Sennitt MV, Stock MJ, Cawthorne MA, Young PW, Murphy GJ (1999) The tissue distribution of the human beta3-adrenoceptor studied using a monoclonal antibody: direct evidence of the beta3-adrenoceptor in human adipose tissue, atrium and skeletal muscle. Int J Obes Relat Metab Disord 23:1057–1065CrossRefPubMedGoogle Scholar
  9. Chen Z, Miao G, Liu M, Hao G, Liu Y, Fang X, Zhang Z, Lu L, Zhang J, Zhang L (2010) Age-related up-regulation of beta3-adrenergic receptor in heart-failure rats. J Recept Signal Transduct Res 30:227–233CrossRefPubMedGoogle Scholar
  10. Cheng HJ, Zhang ZS, Onishi K, Ukai T, Sane DC, Cheng CP (2001) Upregulation of functional beta(3)-adrenergic receptor in the failing canine myocardium. Circ Res 89:599–606CrossRefPubMedGoogle Scholar
  11. Christ T, Molenaar P, Klenowski PM, Ravens U, Kaumann AJ (2011) Human atrial beta(1L)-adrenoceptor but not beta(3)-adrenoceptor activation increases force and Ca(2+) current at physiological temperature. Br J Pharmacol 162:823–839PubMedCentralCrossRefPubMedGoogle Scholar
  12. De Matteis R, Arch JR, Petroni ML, Ferrari D, Cinti S, Stock MJ (2002) Immunohistochemical identification of the beta(3)-adrenoceptor in intact human adipocytes and ventricular myocardium: effect of obesity and treatment with ephedrine and caffeine. Int J Obes Relat Metab Disord 26:1442–1450CrossRefPubMedGoogle Scholar
  13. Derici K, Samsar U, Demirel-Yilmaz E (2012) Nitric oxide effects depend on different mechanisms in different regions of the rat heart. Heart Vessels 27:89–97CrossRefPubMedGoogle Scholar
  14. Dessy C, Balligand JL (2010) Beta3-adrenergic receptors in cardiac and vascular tissues emerging concepts and therapeutic perspectives. Adv Pharmacol 59:135–163CrossRefPubMedGoogle Scholar
  15. Emorine LJ, Marullo S, Briend-Sutren MM, Patey G, Tate K, Delavier-Klutchko C, Strosberg AD (1989) Molecular characterization of the human beta 3-adrenergic receptor. Science 245:1118–1121CrossRefPubMedGoogle Scholar
  16. Gauthier C, Tavernier G, Charpentier F, Langin D, Le Marec H (1996) Functional beta3-adrenoceptor in the human heart. J Clin Invest 98:556–562PubMedCentralCrossRefPubMedGoogle Scholar
  17. Gauthier C, Leblais V, Kobzik L, Trochu JN, Khandoudi N, Bril A, Balligand JL, Le Marec H (1998) The negative inotropic effect of beta3-adrenoceptor stimulation is mediated by activation of a nitric oxide synthase pathway in human ventricle. J Clin Invest 102:1377–1384PubMedCentralCrossRefPubMedGoogle Scholar
  18. Gomez-Ospina N, Tsuruta F, Barreto-Chang O, Hu L, Dolmetsch R (2006) The C terminus of the L-type voltage-gated calcium channel Ca(V)1.2 encodes a transcription factor. Cell 127:591–606PubMedCentralCrossRefPubMedGoogle Scholar
  19. Gomez-Ospina N, Panagiotakos G, Portmann T, Pasca SP, Rabah D, Budzillo A, Kinet JP, Dolmetsch RE (2013) A promoter in the coding region of the calcium channel gene CACNA1C generates the transcription factor CCAT. PLoS One 8:e60526PubMedCentralCrossRefPubMedGoogle Scholar
  20. Holubarsch C, Schmidt-Schweda S, Knorr A, Duis J, Pieske B, Ruf T, Fasol R, Hasenfuss G, Just H (1994) Functional significance of angiotensin receptors in human myocardium. Significant differences between atrial and ventricular myocardium. Eur Heart J 15(Suppl D):88–91CrossRefPubMedGoogle Scholar
  21. Jahnel U, Rupp J, Ertl R, Nawrath H (1992) Positive inotropic response to 5-HT in human atrial but not in ventricular heart muscle. Naunyn Schmiedebergs Arch Pharmacol 346:482–485PubMedGoogle Scholar
  22. Joseph SS, Lynham JA, Colledge WH, Kaumann AJ (2004) Binding of (−)-[3H]-CGP12177 at two sites in recombinant human beta 1-adrenoceptors and interaction with beta-blockers. Naunyn Schmiedebergs Arch Pharmacol 369:525–532CrossRefPubMedGoogle Scholar
  23. Kaumann AJ, Molenaar P (1997) Modulation of human cardiac function through 4 beta-adrenoceptor populations. Naunyn Schmiedebergs Arch Pharmacol 355:667–681CrossRefPubMedGoogle Scholar
  24. Kirstein M, Rivet-Bastide M, Hatem S, Benardeau A, Mercadier JJ, Fischmeister R (1995) Nitric oxide regulates the calcium current in isolated human atrial myocytes. J Clin Invest 95:794–802PubMedCentralCrossRefPubMedGoogle Scholar
  25. Kong YH, Zhang Y, Li N, Zhang L, Gao YH, Xue HJ, Li Y, Li WM (2010) Association between beta3-adrenergic receptor and oxidative stress in chronic heart failure rats. Zhonghua Xin Xue Guan Bing Za Zhi 38:435–439PubMedGoogle Scholar
  26. Kulandavelu S, Hare JM (2012) Alterations in beta3-adrenergic cardiac innervation and nitric oxide signaling in heart failure. J Am Coll Cardiol 59:1988–1990CrossRefPubMedGoogle Scholar
  27. Kuznetsov V, Pak E, Robinson RB, Steinberg SF (1995) Beta 2-adrenergic receptor actions in neonatal and adult rat ventricular myocytes. Circ Res 76:40–52CrossRefPubMedGoogle Scholar
  28. Leblais V, Demolombe S, Vallette G, Langin D, Baro I, Escande D, Gauthier C (1999) Beta3-adrenoceptor control the cystic fibrosis transmembrane conductance regulator through a cAMP/protein kinase A-independent pathway. J Biol Chem 274:6107–6113CrossRefPubMedGoogle Scholar
  29. Li H, Liu Y, Huang H, Tang Y, Yang B, Huang C (2010) Activation of beta3-adrenergic receptor inhibits ventricular arrhythmia in heart failure through calcium handling. Tohoku J Exp Med 222:167–174CrossRefPubMedGoogle Scholar
  30. Moniotte S, Kobzik L, Feron O, Trochu JN, Gauthier C, Balligand JL (2001a) Upregulation of beta(3)-adrenoceptors and altered contractile response to inotropic amines in human failing myocardium. Circulation 103:1649–1655CrossRefPubMedGoogle Scholar
  31. Moniotte S, Vaerman JL, Kockx MM, Larrouy D, Langin D, Noirhomme P, Balligand JL (2001b) Real-time RT-PCR for the detection of beta-adrenoceptor messenger RNAs in small human endomyocardial biopsies. J Mol Cell Cardiol 33:2121–2133CrossRefPubMedGoogle Scholar
  32. Morimoto A, Hasegawa H, Cheng HJ, Little WC, Cheng CP (2004) Endogenous beta3-adrenoreceptor activation contributes to left ventricular and cardiomyocyte dysfunction in heart failure. Am J Physiol Heart Circ Physiol 286:H2425–H2433CrossRefPubMedGoogle Scholar
  33. Napp A, Brixius K, Pott C, Ziskoven C, Boelck B, Mehlhorn U, Schwinger RH, Bloch W (2009) Effects of the beta3-adrenergic agonist BRL 37344 on endothelial nitric oxide synthase phosphorylation and force of contraction in human failing myocardium. J Card Fail 15:57–67CrossRefPubMedGoogle Scholar
  34. Niu X, Watts VL, Cingolani OH, Sivakumaran V, Leyton-Mange JS, Ellis CL, Miller KL, Vandegaer K, Bedja D, Gabrielson KL, Paolocci N, Kass DA, Barouch LA (2012) Cardioprotective effect of beta-3 adrenergic receptor agonism: role of neuronal nitric oxide synthase. J Am Coll Cardiol 59:1979–1987PubMedCentralCrossRefPubMedGoogle Scholar
  35. Perera RK, Nikolaev VO (2013) Compartmentation of cAMP signalling in cardiomyocytes in health and disease. Acta Physiol (Oxf) 207:650–662CrossRefGoogle Scholar
  36. Puceat M, Clement O, Lechene P, Pelosin JM, Ventura-Clapier R, Vassort G (1990) Neurohormonal control of calcium sensitivity of myofilaments in rat single heart cells. Circ Res 67:517–524CrossRefPubMedGoogle Scholar
  37. Rasmussen HH, Figtree GA, Krum H, Bundgaard H (2009) The use of beta3-adrenergic receptor agonists in the treatment of heart failure. Curr Opin Investig Drugs 10:955–962PubMedGoogle Scholar
  38. Rozec B, Gauthier C (2006) beta3-adrenoceptors in the cardiovascular system: putative roles in human pathologies. Pharmacol Ther 111:652–673CrossRefPubMedGoogle Scholar
  39. Rucker-Martin C, Hatem S, Dubus I, Mace L, Samuel JL, Mercadier JJ (1993) Behaviour of human atrial myocytes in culture is donor age dependent. Neuromuscul Disord 3:385–390CrossRefPubMedGoogle Scholar
  40. Sarsero D, Molenaar P, Kaumann AJ, Freestone NS (1999) Putative beta 4-adrenoceptors in rat ventricle mediate increases in contractile force and cell Ca2+: comparison with atrial receptors and relationship to (–)-[3H]-CGP 12177 binding. Br J Pharmacol 128:1445–1460PubMedCentralCrossRefPubMedGoogle Scholar
  41. Sarsero D, Russell FD, Lynham JA, Rabnott G, Yang I, Fong KM, Li L, Kaumann AJ, Molenaar P (2003) (–)-CGP 12177 increases contractile force and hastens relaxation of human myocardial preparations through a propranolol-resistant state of the beta 1-adrenoceptor. Naunyn Schmiedebergs Arch Pharmacol 367:10–21CrossRefPubMedGoogle Scholar
  42. Schoemaker RG, Du XY, Bax WA, Bos E, Saxena PR (1993) 5-Hydroxytryptamine stimulates human isolated atrium but not ventricle. Eur J Pharmacol 230:103–105CrossRefPubMedGoogle Scholar
  43. Schroder E, Byse M, Satin J (2009) L-type calcium channel C terminus autoregulates transcription. Circ Res 104:1373–1381PubMedCentralCrossRefPubMedGoogle Scholar
  44. Sheng L, Shen Q, Huang K, Liu G, Zhao J, Xu W, Liu Y, Li W, Li Y (2012) Upregulation of beta3-adrenergic receptors contributes to atrial structural remodeling in rapid pacing induced atrial fibrillation canines. Cell Physiol Biochem 30:372–381CrossRefPubMedGoogle Scholar
  45. Skeberdis VA, Gendviliene V, Zablockaite D, Treinys R, Macianskiene R, Bogdelis A, Jurevicius J, Fischmeister R (2008) Beta3-adrenergic receptor activation increases human atrial tissue contractility and stimulates the L-type Ca2+ current. J Clin Invest 118:3219–3227PubMedCentralPubMedGoogle Scholar
  46. Vandecasteele G, Eschenhagen T, Fischmeister R (1998) Role of the NO-cGMP pathway in the muscarinic regulation of the L-type Ca2+ current in human atrial myocytes. J Physiol 506(Pt 3):653–663PubMedCentralCrossRefPubMedGoogle Scholar
  47. Vandecasteele G, Verde I, Rucker-Martin C, Donzeau-Gouge P, Fischmeister R (2001) Cyclic GMP regulation of the L-type Ca(2+) channel current in human atrial myocytes. J Physiol 533:329–340PubMedCentralCrossRefPubMedGoogle Scholar
  48. Zhao Q, Zeng F, Liu JB, He Y, Li B, Jiang ZF, Wu TG, Wang LX (2012) Upregulation of beta3-adrenergic receptor expression in the atrium of rats with chronic heart failure. J Cardiovasc Pharmacol Ther 18:133–137CrossRefPubMedGoogle Scholar
  49. Zima A, Martynyuk AE, Seubert CN, Morey TE, Sumners C, Cucchiara RF, Dennis DM (2000) Antagonism of the positive dromotropic effect of isoproterenol by adenosine: role of nitric oxide, cGMP-dependent cAMP-phosphodiesterase and protein kinase G. J Mol Cell Cardiol 32:1609–1619CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Rimantas Treinys
    • 1
  • Danguolė Zablockaitė
    • 1
  • Vida Gendvilienė
    • 1
  • Jonas Jurevičius
    • 1
  • V. Arvydas Skeberdis
    • 1
    Email author
  1. 1.Institute of CardiologyLithuanian University of Health SciencesKaunasLithuania

Personalised recommendations