The Journal of Membrane Biology

, Volume 247, Issue 2, pp 107–125 | Cite as

Prediction of Aquaporin Function by Integrating Evolutionary and Functional Analyses

  • Juliana Perez Di Giorgio
  • Gabriela Soto
  • Karina Alleva
  • Cintia Jozefkowicz
  • Gabriela Amodeo
  • Jorge Prometeo Muschietti
  • Nicolás Daniel Ayub
Topical Review

Abstract

Aquaporins (AQPs) are a family of channel proteins, which transport water and/or small solutes across cell membranes. AQPs are present in Bacteria, Eukarya, and Archaea. The classical AQP evolution paradigm explains the inconsistent phylogenetic trees by multiple transfer events and emphasizes that the assignment of orthologous AQPs is not possible, making it difficult to integrate functional information. Recently, a novel phylogenetic framework of eukaryotic AQP evolution showed congruence between eukaryotic AQPs and organismal trees identifying 32 orthologous clusters in plants and animals (Soto et al. Gene 503:165–176, 2012). In this article, we discuss in depth the methodological strength, the ability to predict functionality and the AQP community perception about the different paradigms of AQP evolution. Moreover, we show an updated review of AQPs transport functions in association with phylogenetic analyses. Finally, we discuss the possible effect of AQP data integration in the understanding of water and solute transport in eukaryotic cells.

Keywords

Aquaporin Evolution Function Integration 

References

  1. Abby SS, Tannier E, Gouy M, Daubin V (2010) Detecting lateral gene transfers by statistical reconciliation of phylogenetic forests. BMC Bioinform 11:324CrossRefGoogle Scholar
  2. Abrami L, Tacnet F, Ripoche P (1995) Evidence for a glycerol pathway through aquaporin 1 (CHIP28) channels. Pflüg Arch Eur J Physiol 430:447–458CrossRefGoogle Scholar
  3. Amezcua-Romero JC, Pantoja O, Vera-Estrella R (2010) Ser123 is essential for the water channel activity of McPIP2;1 from Mesembryanthemum crystallinum. J Biol Chem 285:16739–16747PubMedCentralPubMedCrossRefGoogle Scholar
  4. Andersson JO (2005) Lateral gene transfer in eukaryotes. Cell Mol Life Sci 62:1182–1197PubMedCrossRefGoogle Scholar
  5. Anthony TL, Brooks HL, Boassa D, Leonov S, Yanochko GM, Regan JW, Yool AJ (2000) Cloned human aquaporin-1 is a cyclic GMP-gated ion channel. Mol Pharmacol 57:576–588PubMedGoogle Scholar
  6. Ayub ND, Pettinari MJ, Mendez BS, Lopez NI (2007) The polyhydroxyalkanoate genes of a stress resistant Antarctic Pseudomonas are situated within a genomic island. Plasmid 58:240–248PubMedCrossRefGoogle Scholar
  7. Azad AK, Katsuhara M, Sawa Y, Ishikawa T, Shibata H (2008) Characterization of four plasma membrane aquaporins in tulip petals: a putative homolog is regulated by phosphorylation. Plant Cell Physiol 49:1196–1208PubMedCrossRefGoogle Scholar
  8. Azad AK, Yoshikawa N, Ishikawa T, Sawa Y, Shibata H (2012) Substitution of a single amino acid residue in the aromatic/arginine selectivity filter alters the transport profiles of tonoplast aquaporin homologs. Biochim Biophys Acta 1818:1–11PubMedCrossRefGoogle Scholar
  9. Bellati J, Alleva K, Soto G, Vitali V, Jozefkowicz C, Amodeo G (2010) Intracellular pH sensing is altered by plasma membrane PIP aquaporin co-expression. Plant Mol Biol 74:105–118PubMedCrossRefGoogle Scholar
  10. Bertl A, Kaldenhoff R (2007) Function of a separate NH3-pore in Aquaporin TIP2;2 from wheat. FEBS Lett 581:5413–5417PubMedCrossRefGoogle Scholar
  11. Biela A, Grote K, Otto B, Hoth S, Hedrich R, Kaldenhoff R (1999) The Nicotiana tabacum plasma membrane aquaporin NtAQP1 is mercury-insensitive and permeable for glycerol. Plant J 18:565–570PubMedCrossRefGoogle Scholar
  12. Bienert GP, Chaumont F (2013) Aquaporin-facilitated transmembrane diffusion of hydrogen peroxide. Biochim Biophys Acta. doi:10.1016/j.bbagen.2013.09.017
  13. Bienert GP, Moller AL, Kristiansen KA, Schulz A, Moller IM, Schjoerring JK, Jahn TP (2007) Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes. J Biol Chem 282:1183–1192PubMedCrossRefGoogle Scholar
  14. Bienert GP, Thorsen M, Schussler MD, Nilsson HR, Wagner A, Tamas MJ, Jahn TP (2008) A subgroup of plant aquaporins facilitate the bi-directional diffusion of As(OH)3 and Sb(OH)3 across membranes. BMC Biol 6:26PubMedCentralPubMedCrossRefGoogle Scholar
  15. Bots M, Feron R, Uehlein N, Weterings K, Kaldenhoff R, Mariani T (2005) PIP1 and PIP2 aquaporins are differentially expressed during tobacco anther and stigma development. J Exp Bot 56:113–121PubMedGoogle Scholar
  16. Calamita G, Gena P, Meleleo D, Ferri D, Svelto M (2006) Water permeability of rat liver mitochondria: a biophysical study. Biochim Biophys Acta 1758:1018–1024PubMedCrossRefGoogle Scholar
  17. Calamita G, Moreno M, Ferri D, Silvestri E, Roberti P, Schiavo L, Gena P, Svelto M, Goglia F (2007) Triiodothyronine modulates the expression of aquaporin-8 in rat liver mitochondria. J Endocrinol 192:111–120PubMedCrossRefGoogle Scholar
  18. Cerda J, Finn RN (2010) Piscine aquaporins: an overview of recent advances. J Exp Zool A 313:623–650CrossRefGoogle Scholar
  19. Chandy G, Zampighi GA, Kreman M, Hall JE (1997) Comparison of the water transporting properties of MIP and AQP1. J Membr Biol 159:29–39PubMedCrossRefGoogle Scholar
  20. Chaumont F, Barrieu F, Wojcik E, Chrispeels MJ, Jung R (2001) Aquaporins constitute a large and highly divergent protein family in maize. Plant Physiol 125:1206–1215PubMedCentralPubMedCrossRefGoogle Scholar
  21. Chauvigne F, Lubzens E, Cerda J (2011) Design and characterization of genetically engineered zebrafish aquaporin-3 mutants highly permeable to the cryoprotectant ethylene glycol. BMC Biotechnol 11:34PubMedCentralPubMedCrossRefGoogle Scholar
  22. Chauvigne F, Boj M, Vilella S, Finn RN, Cerda J (2013) Subcellular localization of selectively permeable aquaporins in the male germ line of a marine teleost reveals spatial redistribution in activated spermatozoa. Biol Reprod 89:37PubMedCrossRefGoogle Scholar
  23. Choi WG, Roberts DM (2007) Arabidopsis NIP2;1, a major intrinsic protein transporter of lactic acid induced by anoxic stress. J Biol Chem 282:24209–24218PubMedCrossRefGoogle Scholar
  24. Ciavatta VT, Morillon R, Pullman GS, Chrispeels MJ, Cairney J (2001) An aquaglyceroporin is abundantly expressed early in the development of the suspensor and the embryo proper of loblolly pine. Plant Physiol 127:1556–1567PubMedCentralPubMedCrossRefGoogle Scholar
  25. Cleland CE (2002) Methodological and epistemic differences between historical science and experimental science. Philos Sci 69:474–496CrossRefGoogle Scholar
  26. Daniels MJ, Mirkov TE, Chrispeels MJ (1994) The plasma membrane of arabidopsis thaliana contains a mercury-insensitive aquaporin that is a homolog of the tonoplast water channel protein TIP. Plant Physiol 106:1325–1333PubMedCentralPubMedCrossRefGoogle Scholar
  27. Danielson J (2010) Plant major intrinsic proteins, natural variation and evolution. Media-Tryck AB, LundGoogle Scholar
  28. Danielson JA, Johanson U (2008) Unexpected complexity of the aquaporin gene family in the moss Physcomitrella patens. BMC Plant Biol 8:45PubMedCentralPubMedCrossRefGoogle Scholar
  29. Dean RM, Rivers RL, Zeidel ML, Roberts DM (1999) Purification and functional reconstitution of soybean nodulin 26. An aquaporin with water and glycerol transport properties. Biochemistry 38:347–353PubMedCrossRefGoogle Scholar
  30. Delsuc F, Brinkmann H, Philippe H (2005) Phylogenomics and the reconstruction of the tree of life. Nat Rev Genet 6:361–375PubMedCrossRefGoogle Scholar
  31. Dynowski M, Schaaf G, Loque D, Moran O, Ludewig U (2008) Plant plasma membrane water channels conduct the signalling molecule H2O2. Biochem J 414:53–61PubMedCrossRefGoogle Scholar
  32. Echevarria M, Windhager EE, Tate SS, Frindt G (1994) Cloning and expression of AQP3, a water channel from the medullary collecting duct of rat kidney. Proc Natl Acad Sci USA 91:10997–11001PubMedCentralPubMedCrossRefGoogle Scholar
  33. Eckert M, Biela A, Siefritz F, Kaldenhoff IR (1999) New aspects of plant aquaporin regulation and specificity. J Exp Bot 50:1541–1545Google Scholar
  34. Endeward V, Musa-Aziz R, Cooper GJ, Chen LM, Pelletier MF, Virkki LV, Supuran CT, King LS, Boron WF, Gros G (2006) Evidence that aquaporin 1 is a major pathway for CO2 transport across the human erythrocyte membrane. FASEB J 20:1974–1981PubMedCrossRefGoogle Scholar
  35. Fenton RA, Moeller HB, Zelenina M, Snaebjornsson MT, Holen T, MacAulay N (2010) Differential water permeability and regulation of three aquaporin 4 isoforms. Cell Mol Life Sci 67:829–840PubMedCrossRefGoogle Scholar
  36. Fetter K, Van Wilder V, Moshelion M, Chaumont F (2004) Interactions between plasma membrane aquaporins modulate their water channel activity. Plant Cell 16:215–228PubMedCentralPubMedCrossRefGoogle Scholar
  37. Finn RN, Cerda J (2011) Aquaporin evolution in fishes. Front Physiol 2:44PubMedCentralPubMedCrossRefGoogle Scholar
  38. Froger A, Clemens D, Kalman K, Nemeth-Cahalan KL, Schilling TF, Hall JE (2010) Two distinct aquaporin 0s required for development and transparency of the zebrafish lens. Investig Ophthalmol Vis Sci 51:6582–6592CrossRefGoogle Scholar
  39. Fu D (2000) Structure of a glycerol-conducting channel and the basis for its selectivity. Science 290:481–486PubMedCrossRefGoogle Scholar
  40. Fushimi K, Uchida S, Hara Y, Hirata Y, Marumo F, Sasaki S (1993) Cloning and expression of apical membrane water channel of rat kidney collecting tubule. Nature 361:549–552PubMedCrossRefGoogle Scholar
  41. Gaspar M (2003) Cloning and characterization of ZmPIP1-5b, an aquaporin transporting water and urea. Plant Sci 165:21–31CrossRefGoogle Scholar
  42. Gerbeau P, Güçlü J, Ripoche P, Maurel C (1999) Aquaporin Nt-TIPa can account for the high permeability of tobacco cell vacuolar membrane to small neutral solutes. Plant J 18:577–587PubMedCrossRefGoogle Scholar
  43. Geyer RR, Musa-Aziz R, Qin X, Boron WF (2013) Relative CO(2)/NH(3) selectivities of mammalian aquaporins 0–9. Am J Physiol Cell Physiol 304:C985–C994PubMedCrossRefGoogle Scholar
  44. Goldraij A, Polacco JC (2000) Arginine degradation by arginase in mitochondria of soybean seedling cotyledons. Planta 210(4):652–658PubMedCrossRefGoogle Scholar
  45. Gomes D, Agasse A, Thiebaud P, Delrot S, Geros H, Chaumont F (2009) Aquaporins are multifunctional water and solute transporters highly divergent in living organisms. Biochim Biophys Acta 1788:1213–1228PubMedCrossRefGoogle Scholar
  46. Gu R, Chen X, Zhou Y, Yuan L (2012) Isolation and characterization of three maize aquaporin genes, ZmNIP2;1, ZmNIP2;4 and ZmTIP4;4 involved in urea transport. BMB Rep 45:96–101PubMedCrossRefGoogle Scholar
  47. Guenther JF, Roberts DM (2000) Water-selective and multifunctional aquaporins from Lotus japonicus nodules. Planta 210:741–748PubMedCrossRefGoogle Scholar
  48. Hachez C, Besserer A, Chevalier AS, Chaumont F (2013) Insights into plant plasma membrane aquaporin trafficking. Trends Plant Sci 18:344–352PubMedCrossRefGoogle Scholar
  49. Hara-Chikuma M, Chikuma S, Sugiyama Y, Kabashima K, Verkman AS, Inoue S, Miyachi Y (2012) Chemokine-dependent T cell migration requires aquaporin-3-mediated hydrogen peroxide uptake. J Exp Med 209:1743–1752PubMedCentralPubMedCrossRefGoogle Scholar
  50. Hatakeyama S, Yoshida Y, Tani T, Koyama Y, Nihei K, Ohshiro K, Kamiie JI, Yaoita E, Suda T, Hatakeyama K, Yamamoto T (2001) Cloning of a new aquaporin (AQP10) abundantly expressed in duodenum and jejunum. Biochem Biophys Res Commun 287:814–819PubMedCrossRefGoogle Scholar
  51. Hazama A, Kozono D, Guggino WB, Agre P, Yasui M (2002) Ion permeation of AQP6 water channel protein. Single channel recordings after Hg2+ activation. J Biol Chem 277:29224–29230PubMedCrossRefGoogle Scholar
  52. Heckwolf M, Pater D, Hanson DT, Kaldenhoff R (2011) The Arabidopsis thaliana aquaporin AtPIP1;2 is a physiologically relevant CO(2) transport facilitator. Plant J 67:795–804PubMedCrossRefGoogle Scholar
  53. Hedfalk K, Tornroth-Horsefield S, Nyblom M, Johanson U, Kjellbom P, Neutze R (2006) Aquaporin gating. Curr Opin Struct Biol 16:447–456PubMedCrossRefGoogle Scholar
  54. Herrera M, Hong NJ, Garvin JL (2006) Aquaporin-1 transports NO across cell membranes. Hypertension 48:157–164PubMedCrossRefGoogle Scholar
  55. Heymann JB, Engel A (1999) Aquaporins: phylogeny, structure, and physiology of water channels. News Physiol Sci 14:187–193PubMedGoogle Scholar
  56. Holm LM, Klaerke DA, Zeuthen T (2004) Aquaporin 6 is permeable to glycerol and urea. Pflug Arch 448:181–186CrossRefGoogle Scholar
  57. Holm LM, Jahn TP, Moller AL, Schjoerring JK, Ferri D, Klaerke DA, Zeuthen T (2005) NH3 and NH4 + permeability in aquaporin-expressing Xenopus oocytes. Pflug Arch 450:415–428CrossRefGoogle Scholar
  58. Hooijmaijers C, Rhee JY, Kwak KJ, Chung GC, Horie T, Katsuhara M, Kang H (2012) Hydrogen peroxide permeability of plasma membrane aquaporins of Arabidopsis thaliana. J Plant Res 125:147–153PubMedCrossRefGoogle Scholar
  59. Hughes AL, Ekollu V, Friedman R, Rose JR (2005) Gene family content-based phylogeny of prokaryotes: the effect of criteria for inferring homology. Syst Biol 54:268–276PubMedCrossRefGoogle Scholar
  60. Hwang JH, Ellingson SR, Roberts DM (2010) Ammonia permeability of the soybean nodulin 26 channel. FEBS Lett 584:4339–4343PubMedCrossRefGoogle Scholar
  61. Ikeda M, Beitz E, Kozono D, Guggino WB, Agre P, Yasui M (2002) Characterization of aquaporin-6 as a nitrate channel in mammalian cells. Requirement of pore-lining residue threonine 63. J Biol Chem 277:39873–39879PubMedCrossRefGoogle Scholar
  62. Ikeda M, Andoo A, Shimono M, Takamatsu N, Taki A, Muta K, Matsushita W, Uechi T, Matsuzaki T, Kenmochi N, Takata K, Sasaki S, Ito K, Ishibashi K (2011) The NPC motif of aquaporin-11, unlike the NPA motif of known aquaporins, is essential for full expression of molecular function. J Biol Chem 286:3342–3350PubMedCentralPubMedCrossRefGoogle Scholar
  63. Ishibashi K, Sasaki S, Fushimi K, Uchida S, Kuwahara M, Saito H, Furukawa T, Nakajima K, Yamaguchi Y, Gojobori T, Marumo F (1994) Molecular cloning and expression of a member of the aquaporin family with permeability to glycerol and urea in addition to water expressed at the basolateral membrane of kidney collecting duct cells. Proc Natl Acad Sci USA 91:6269–6273PubMedCentralPubMedCrossRefGoogle Scholar
  64. Ishibashi K, Kuwahara M, Gu Y, Kageyama Y, Tohsaka A, Suzuki F, Marumo F, Sasaki S (1997) Cloning and functional expression of a new water channel abundantly expressed in the testis permeable to water, glycerol, and urea. J Biol Chem 272:20782–20786PubMedCrossRefGoogle Scholar
  65. Ishibashi K, Morinaga T, Kuwahara M, Sasaki S, Imai M (2002) Cloning and identification of a new member of water channel (AQP10) as an aquaglyceroporin. Biochim Biophys Acta 1576:335–340PubMedCrossRefGoogle Scholar
  66. Ishibashi K, Kondo S, Hara S, Morishita Y (2011) The evolutionary aspects of aquaporin family. Am J Physiol Regul Integr Comp Physiol 300:R566–R576PubMedCrossRefGoogle Scholar
  67. Ishikawa F, Suga S, Uemura T, Sato MH, Maeshima M (2005) Novel type aquaporin SIPs are mainly localized to the ER membrane and show cell-specific expression in Arabidopsis thaliana. FEBS Lett 579:5814–5820PubMedCrossRefGoogle Scholar
  68. Jahn TP, Moller AL, Zeuthen T, Holm LM, Klaerke DA, Mohsin B, Kuhlbrandt W, Schjoerring JK (2004) Aquaporin homologues in plants and mammals transport ammonia. FEBS Lett 574:31–36PubMedCrossRefGoogle Scholar
  69. Johanson U, Karlsson M, Johansson I, Gustavsson S, Sjövall S, Fraysse L, Weig AR, Kjellbom P (2001) The complete set of genes encoding major intrinsic proteins in Arabidopsis provides a framework for a new nomenclature for major intrinsic proteins in plants. Plant Physiol 126:1358–1369PubMedCentralPubMedCrossRefGoogle Scholar
  70. Johansson I, Karlsson M, Shukla VK, Chrispeels MJ, Larsson C, Kjellbom P (1998) Water transport activity of the plasma membrane aquaporin PM28A is regulated by phosphorylation. Plant Cell 10:451–459PubMedCentralPubMedCrossRefGoogle Scholar
  71. Jozefkowicz C, Rosi P, Sigaut L, Soto G, Pietrasanta LI, Amodeo G, Alleva K (2013) Loop A is critical for the functional interaction of two Beta vulgaris PIP aquaporins. PLoS ONE 8:e57993PubMedCentralPubMedCrossRefGoogle Scholar
  72. Jung JS, Bhat RV, Preston GM, Guggino WB, Baraban JM, Agre P (1994) Molecular characterization of an aquaporin cDNA from brain: candidate osmoreceptor and regulator of water balance. Proc Natl Acad Sci USA 91:13052–13056PubMedCentralPubMedCrossRefGoogle Scholar
  73. Kamiya T, Fujiwara T (2009) Arabidopsis NIP1;1 transports antimonite and determines antimonite sensitivity. Plant Cell Physiol 50:1977–1981PubMedCrossRefGoogle Scholar
  74. Kamiya T, Tanaka M, Mitani N, Ma JF, Maeshima M, Fujiwara T (2009) NIP1;1, an aquaporin homolog, determines the arsenite sensitivity of Arabidopsis thaliana. J Biol Chem 284:2114–2120PubMedCrossRefGoogle Scholar
  75. Kammerloher W, Fischer U, Piechottka GP, Schäffner AR (1994) Water channels in the plant plasma membrane cloned by immunoselection from a mammalian expression system. Plant J 6:187–199PubMedCrossRefGoogle Scholar
  76. Kishida K, Kuriyama H, Funahashi T, Shimomura I, Kihara S, Ouchi N, Nishida M, Nishizawa H, Matsuda M, Takahashi M, Hotta K, Nakamura T, Yamashita S, Tochino Y, Matsuzawa Y (2000) Aquaporin adipose, a putative glycerol channel in adipocytes. J Biol Chem 275:20896–20902PubMedCrossRefGoogle Scholar
  77. Klebl F, Wolf M, Sauer N (2003) A defect in the yeast plasma membrane urea transporter Dur3p is complemented by CpNIP1, a Nod26-like protein from zucchini (Cucurbita pepo L.), and by Arabidopsis thaliana δ-TIP or γ-TIP. FEBS Lett 547:69–74PubMedCrossRefGoogle Scholar
  78. Kojima S, Bohner A, von Wiren N (2006) Molecular mechanisms of urea transport in plants. J Membr Biol 212:83–91PubMedCrossRefGoogle Scholar
  79. Koonin EV (2003) Horizontal gene transfer: the path to maturity. Mol Microbiol 50:725–727PubMedCrossRefGoogle Scholar
  80. Koonin EV, Makarova KS, Aravind L (2001) Horizontal gene transfer in prokaryotes: quantification and classification. Annu Rev Microbiol 55:709–742PubMedCrossRefGoogle Scholar
  81. Koyama Y, Yamamoto T, Kondo D, Funaki H, Yaoita E, Kawasaki K, Sato N, Hatakeyama K, Kihara I (1997) Molecular cloning of a new aquaporin from rat pancreas and liver. J Biol Chem 272:30329–30333PubMedCrossRefGoogle Scholar
  82. Li WH (1997) Molecular evolution. Sinauer Associates, SunderlandGoogle Scholar
  83. Li GW, Peng YH, Yu X, Zhang MH, Cai WM, Sun WN, Su WA (2008) Transport functions and expression analysis of vacuolar membrane aquaporins in response to various stresses in rice. J Plant Physiol 165:1879–1888PubMedCrossRefGoogle Scholar
  84. Li H, Chen H, Steinbronn C, Wu B, Beitz E, Zeuthen T, Voth GA (2011) Enhancement of proton conductance by mutations of the selectivity filter of aquaporin-1. J Mol Biol 407:607–620PubMedCrossRefGoogle Scholar
  85. Ligaba A, Katsuhara M, Shibasaka M, Djira G (2011) Abiotic stresses modulate expression of major intrinsic proteins in barley (Hordeum vulgare). C R Biol 334:127–139PubMedCrossRefGoogle Scholar
  86. Liu Z, Shen J, Carbrey JM, Mukhopadhyay R, Agre P, Rosen BP (2002) Arsenite transport by mammalian aquaglyceroporins AQP7 and AQP9. Proc Natl Acad Sci USA 99:6053–6058PubMedCentralPubMedCrossRefGoogle Scholar
  87. Liu LH, Ludewig U, Gassert B, Frommer WB, von Wiren N (2003) Urea transport by nitrogen-regulated tonoplast intrinsic proteins in Arabidopsis. Plant Physiol 133:1220–1228PubMedCentralPubMedCrossRefGoogle Scholar
  88. Liu Z, Carbrey JM, Agre P, Rosen BP (2004) Arsenic trioxide uptake by human and rat aquaglyceroporins. Biochem Biophys Res Commun 316:1178–1185PubMedCrossRefGoogle Scholar
  89. Liu K, Nagase H, Huang CG, Calamita G, Agre P (2006) Purification and functional characterization of aquaporin-8. Biol Cell 98:153–161PubMedCrossRefGoogle Scholar
  90. Loque D, Ludewig U, Yuan L, von Wiren N (2005) Tonoplast intrinsic proteins AtTIP2;1 and AtTIP2;3 facilitate NH3 transport into the vacuole. Plant Physiol 137:671–680PubMedCentralPubMedCrossRefGoogle Scholar
  91. Ma T, Frigeri A, Tsai ST, Verbavatz JM, Verkman AS (1993) Localization and functional analysis of CHIP28k water channels in stably transfected Chinese hamster ovary cells. J Biol Chem 268:22756–22764PubMedGoogle Scholar
  92. Ma T, Yang B, Kuo WL, Verkman AS (1996) cDNA cloning and gene structure of a novel water channel expressed exclusively in human kidney: evidence for a gene cluster of aquaporins at chromosome locus 12q13. Genomics 35:543–550PubMedCrossRefGoogle Scholar
  93. Ma JF, Tamai K, Yamaji N, Mitani N, Konishi S, Katsuhara M, Ishiguro M, Murata Y, Yano M (2006) A silicon transporter in rice. Nature 440:688–691PubMedCrossRefGoogle Scholar
  94. Ma JF, Yamaji N, Mitani N, Xu XY, Su YH, McGrath SP, Zhao FJ (2008) Transporters of arsenite in rice and their role in arsenic accumulation in rice grain. Proc Natl Acad Sci USA 105:9931–9935PubMedCentralPubMedCrossRefGoogle Scholar
  95. Maeshima M, Ishikawa F (2008) ER membrane aquaporins in plants. Pflug Arch 456:709–716CrossRefGoogle Scholar
  96. Marchler-Bauer A, Zheng C, Chitsaz F, Derbyshire MK, Geer LY, Geer RC, Gonzales NR, Gwadz M, Hurwitz DI, Lanczycki CJ, Lu F, Lu S, Marchler GH, Song JS, Thanki N, Yamashita RA, Zhang D, Bryant SH (2013) CDD: conserved domains and protein three-dimensional structure. Nucleic Acids Res 41:D348–D352PubMedCentralPubMedCrossRefGoogle Scholar
  97. Marinelli RA, Pham L, Agre P, LaRusso NF (1997) Secretin promotes osmotic water transport in rat cholangiocytes by increasing aquaporin-1 water channels in plasma membrane. Evidence for a secretin-induced vesicular translocation of aquaporin-1. J Biol Chem 272:12984–12988PubMedCrossRefGoogle Scholar
  98. Matsumoto T, Lian HL, Su WA, Tanaka D, Liu C, Iwasaki I, Kitagawa Y (2009) Role of the aquaporin PIP1 subfamily in the chilling tolerance of rice. Plant Cell Physiol 50:216–229PubMedCrossRefGoogle Scholar
  99. Maurel C, Reizer J, Schroeder JI, Chrispeels MJ (1993) The vacuolar membrane protein gamma-TIP creates water specific channels in Xenopus oocytes. EMBO J 12:2241–2247PubMedCentralPubMedGoogle Scholar
  100. McDermott JR, Jiang X, Beene LC, Rosen BP, Liu Z (2010) Pentavalent methylated arsenicals are substrates of human AQP9. Biometals 23:119–127PubMedCentralPubMedCrossRefGoogle Scholar
  101. Meinild AK (1998) Bidirectional water fluxes and specificity for small hydrophilic molecules in aquaporins 0–5. J Biol Chem 273:32446–32451PubMedCrossRefGoogle Scholar
  102. Mitani N, Yamaji N, Ma JF (2008) Characterization of substrate specificity of a rice silicon transporter, Lsi1. Pflug Arch 456:679–686CrossRefGoogle Scholar
  103. Mitani N, Yamaji N, Ma JF (2009) Identification of maize silicon influx transporters. Plant Cell Physiol 50:5–12PubMedCentralPubMedCrossRefGoogle Scholar
  104. Mitani-Ueno N, Yamaji N, Zhao FJ, Ma JF (2011) The aromatic/arginine selectivity filter of NIP aquaporins plays a critical role in substrate selectivity for silicon, boron, and arsenic. J Exp Bot 62:4391–4398PubMedCentralPubMedCrossRefGoogle Scholar
  105. Mizutani M, Watanabe S, Nakagawa T, Maeshima M (2006) Aquaporin NIP2;1 is mainly localized to the ER membrane and shows root-specific accumulation in Arabidopsis thaliana. Plant Cell Physiol 47:1420–1426PubMedCrossRefGoogle Scholar
  106. Mobley HL, Island MD, Hausinger RP (1995) Molecular biology of microbial ureases. Microbiol Rev 59:451–480PubMedCentralPubMedGoogle Scholar
  107. Montpetit J, Vivancos J, Mitani-Ueno N, Yamaji N, Remus-Borel W, Belzile F, Ma JF, Belanger RR (2012) Cloning, functional characterization and heterologous expression of TaLsi1, a wheat silicon transporter gene. Plant Mol Biol 79:35–46PubMedCrossRefGoogle Scholar
  108. Mosa KA, Kumar K, Chhikara S, McDermott J, Liu Z, Musante C, White JC, Dhankher OP (2012) Members of rice plasma membrane intrinsic proteins subfamily are involved in arsenite permeability and tolerance in plants. Transgenic Res 21:1265–1277PubMedCrossRefGoogle Scholar
  109. Moshelion M (2002) Plasma membrane aquaporins in the motor cells of Samanea saman: diurnal and circadian regulation. Plant Cell Online 14:727–739CrossRefGoogle Scholar
  110. Mulders SM, Preston GM, Deen PM, Guggino WB, van Os CH, Agre P (1995) Water channel properties of major intrinsic protein of lens. J Biol Chem 270:9010–9016PubMedCrossRefGoogle Scholar
  111. Musa-Aziz R, Chen LM, Pelletier MF, Boron WF (2009) Relative CO2/NH3 selectivities of AQP1, AQP4, AQP5, AmtB, and RhAG. Proc Natl Acad Sci USA 106:5406–5411PubMedCentralPubMedCrossRefGoogle Scholar
  112. Nakhoul NL, Davis BA, Romero MF, Boron WF (1998) Effect of expressing the water channel aquaporin-1 on the CO2 permeability of Xenopus oocytes. Am J Physiol 274:C543–C548PubMedGoogle Scholar
  113. Neely JD, Christensen BM, Nielsen S, Agre P (1999) Heterotetrameric composition of aquaporin-4 water channels. Biochemistry 38:11156–11163PubMedCrossRefGoogle Scholar
  114. Novichkov PS, Omelchenko MV, Gelfand MS, Mironov AA, Wolf YI, Koonin EV (2004) Genome-wide molecular clock and horizontal gene transfer in bacterial evolution. J Bacteriol 186:6575–6585PubMedCentralPubMedCrossRefGoogle Scholar
  115. Otto B, Uehlein N, Sdorra S, Fischer M, Ayaz M, Belastegui-Macadam X, Heckwolf M, Lachnit M, Pede N, Priem N, Reinhard A, Siegfart S, Urban M, Kaldenhoff R (2010) Aquaporin tetramer composition modifies the function of tobacco aquaporins. J Biol Chem 285:31253–31260PubMedCentralPubMedCrossRefGoogle Scholar
  116. Park JH, Saier MH Jr (1996) Phylogenetic characterization of the MIP family of transmembrane channel proteins. J Membr Biol 153:171–180PubMedCrossRefGoogle Scholar
  117. Pedrozo HA, Schwartz Z, Dean DD, Wiederhold ML, Boyan BD (1996) Regulation of statoconia mineralization in Aplysia californica in vitro. Connect Tissue Res 35:317–323PubMedCrossRefGoogle Scholar
  118. Phillips AJ (2006) Homology assessment and molecular sequence alignment. J Biomed Inform 39:18–33PubMedCrossRefGoogle Scholar
  119. Prasad GV, Coury LA, Finn F, Zeidel ML (1998) Reconstituted aquaporin 1 water channels transport CO2 across membranes. J Biol Chem 273:33123–33126PubMedCrossRefGoogle Scholar
  120. Preston GM, Carroll TP, Guggino WB, Agre P (1992) Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein. Science 256:385–387PubMedCrossRefGoogle Scholar
  121. Quigley F, Rosenberg JM, Shachar-Hill Y, Bohnert HJ (2002) From genome to function: the Arabidopsis aquaporins. Genome Biol 3:RESEARCH0001Google Scholar
  122. Raina S, Preston GM, Guggino WB, Agre P (1995) Molecular cloning and characterization of an aquaporin cDNA from salivary, lacrimal, and respiratory tissues. J Biol Chem 270:1908–1912PubMedCrossRefGoogle Scholar
  123. Rivers RL, Dean RM, Chandy G, Hall JE, Roberts DM, Zeidel ML (1997) Functional analysis of nodulin 26, an aquaporin in soybean root nodule symbiosomes. J Biol Chem 272:16256–16261PubMedCrossRefGoogle Scholar
  124. Rodela TM, Ballantyne JS, Wright PA (2008) Carrier-mediated urea transport across the mitochondrial membrane of an elasmobranch (Raja erinacea) and a teleost (Oncorhynchus mykiss) fish. Am J Physiol Regul Integr Comp Physiol 294:R1947–R1957PubMedCrossRefGoogle Scholar
  125. Sakurai J, Ahamed A, Murai M, Maeshima M, Uemura M (2008) Tissue and cell-specific localization of rice aquaporins and their water transport activities. Plant Cell Physiol 49:30–39PubMedCrossRefGoogle Scholar
  126. Schnurbusch T, Hayes J, Hrmova M, Baumann U, Ramesh SA, Tyerman SD, Langridge P, Sutton T (2010) Boron toxicity tolerance in barley through reduced expression of the multifunctional aquaporin HvNIP2;1. Plant Physiol 153:1706–1715PubMedCentralPubMedCrossRefGoogle Scholar
  127. Schuurmans JA, van Dongen JT, Rutjens BP, Boonman A, Pieterse CM, Borstlap AC (2003) Members of the aquaporin family in the developing pea seed coat include representatives of the PIP, TIP, and NIP subfamilies. Plant Mol Biol 53:633–645PubMedCrossRefGoogle Scholar
  128. Soria LR, Marrone J, Calamita G, Marinelli RA (2013) Ammonia detoxification via ureagenesis in rat hepatocytes involves mitochondrial aquaporin-8 channels. Hepatology 57:2061–2071PubMedCrossRefGoogle Scholar
  129. Soto G, Alleva K, Mazzella MA, Amodeo G, Muschietti JP (2008) AtTIP1;3 and AtTIP5;1, the only highly expressed Arabidopsis pollen-specific aquaporins, transport water and urea. FEBS Lett 582:4077–4082PubMedCrossRefGoogle Scholar
  130. Soto G, Fox R, Ayub N, Alleva K, Guaimas F, Erijman EJ, Mazzella A, Amodeo G, Muschietti J (2010) TIP5;1 is an aquaporin specifically targeted to pollen mitochondria and is probably involved in nitrogen remobilization in Arabidopsis thaliana. Plant J 64:1038–1047PubMedCrossRefGoogle Scholar
  131. Soto G, Alleva K, Amodeo G, Muschietti J, Ayub ND (2012) New insight into the evolution of aquaporins from flowering plants and vertebrates: orthologous identification and functional transfer is possible. Gene 503:165–176PubMedCrossRefGoogle Scholar
  132. Stein WD, Danielli JF (1956) Structure and function in red cell permeability. Discuss Faraday Soc 21:238–251CrossRefGoogle Scholar
  133. Sui H, Han BG, Lee JK, Walian P, Jap BK (2001) Structural basis of water-specific transport through the AQP1 water channel. Nature 414:872–878PubMedCrossRefGoogle Scholar
  134. Takano J, Wada M, Ludewig U, Schaaf G, von Wiren N, Fujiwara T (2006) The Arabidopsis major intrinsic protein NIP5;1 is essential for efficient boron uptake and plant development under boron limitation. Plant Cell 18:1498–1509PubMedCentralPubMedCrossRefGoogle Scholar
  135. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739PubMedCentralPubMedCrossRefGoogle Scholar
  136. Tanaka M, Wallace IS, Takano J, Roberts DM, Fujiwara T (2008) NIP6;1 is a boric acid channel for preferential transport of boron to growing shoot tissues in Arabidopsis. Plant Cell 20:2860–2875PubMedCentralPubMedCrossRefGoogle Scholar
  137. Tingaud-Sequeira A, Calusinska M, Finn RN, Chauvigne F, Lozano J, Cerda J (2010) The zebrafish genome encodes the largest vertebrate repertoire of functional aquaporins with dual paralogy and substrate specificities similar to mammals. BMC Evol Biol 10:38PubMedCentralPubMedCrossRefGoogle Scholar
  138. Tournaire-Roux C, Sutka M, Javot H, Gout E, Gerbeau P, Luu DT, Bligny R, Maurel C (2003) Cytosolic pH regulates root water transport during anoxic stress through gating of aquaporins. Nature 425:393–397PubMedCrossRefGoogle Scholar
  139. Tsukaguchi H, Weremowicz S, Morton CC, Hediger MA (1999) Functional and molecular characterization of the human neutral solute channel aquaporin-9. Am J Physiol 277:F685–F696PubMedGoogle Scholar
  140. Uehlein N, Lovisolo C, Siefritz F, Kaldenhoff R (2003) The tobacco aquaporin NtAQP1 is a membrane CO2 pore with physiological functions. Nature 425:734–737PubMedCrossRefGoogle Scholar
  141. Verbavatz JM, Brown D, Sabolic I, Valenti G, Ausiello DA, Van Hoek AN, Ma T, Verkman AS (1993) Tetrameric assembly of CHIP28 water channels in liposomes and cell membranes: a freeze-fracture study. J Cell Biol 123:605–618PubMedCrossRefGoogle Scholar
  142. Wallace IS, Roberts DM (2004) Homology modeling of representative subfamilies of Arabidopsis major intrinsic proteins. Classification based on the aromatic/arginine selectivity filter. Plant Physiol 135:1059–1068PubMedCentralPubMedCrossRefGoogle Scholar
  143. Wallace IS, Roberts DM (2005) Distinct transport selectivity of two structural subclasses of the nodulin-like intrinsic protein family of plant aquaglyceroporin channels. Biochemistry 44:16826–16834PubMedCrossRefGoogle Scholar
  144. Wallace IS, Shakesby AJ, Hwang JH, Choi WG, Martinkova N, Douglas AE, Roberts DM (2012) Acyrthosiphon pisum AQP2: a multifunctional insect aquaglyceroporin. Biochim Biophys Acta 1818:627–635PubMedCrossRefGoogle Scholar
  145. Weig AR, Jakob C (2000) Functional identification of the glycerol permease activity of Arabidopsis thaliana NLM1 and NLM2 proteins by heterologous expression in Saccharomyces cerevisiae. FEBS Lett 481:293–298PubMedCrossRefGoogle Scholar
  146. Wu B, Beitz E (2007) Aquaporins with selectivity for unconventional permeants. Cell Mol Life Sci 64:2413–2421PubMedCrossRefGoogle Scholar
  147. Wudick MM, Luu DT, Maurel C (2009) A look inside: localization patterns and functions of intracellular plant aquaporins. New Phytol 184:289–302PubMedCrossRefGoogle Scholar
  148. Yakata K, Hiroaki Y, Ishibashi K, Sohara E, Sasaki S, Mitsuoka K, Fujiyoshi Y (2007) Aquaporin-11 containing a divergent NPA motif has normal water channel activity. Biochim Biophys Acta 1768:688–693PubMedCrossRefGoogle Scholar
  149. Yakata K, Tani K, Fujiyoshi Y (2011) Water permeability and characterization of aquaporin-11. J Struct Biol 174:315–320PubMedCrossRefGoogle Scholar
  150. Yan Y, Yang J, Dou Y, Chen M, Ping S, Peng J, Lu W, Zhang W, Yao Z, Li H, Liu W, He S, Geng L, Zhang X, Yang F, Yu H, Zhan Y, Li D, Lin Z, Wang Y, Elmerich C, Lin M, Jin Q (2008) Nitrogen fixation island and rhizosphere competence traits in the genome of root-associated Pseudomonas stutzeri A1501. Proc Natl Acad Sci USA 105:7564–7569PubMedCentralPubMedCrossRefGoogle Scholar
  151. Yang B, Verkman AS (1997) Water and glycerol permeabilities of aquaporins 1–5 and MIP determined quantitatively by expression of epitope-tagged constructs in Xenopus oocytes. J Biol Chem 272:16140–16146PubMedCrossRefGoogle Scholar
  152. Yasui M, Hazama A, Kwon TH, Nielsen S, Guggino WB, Agre P (1999) Rapid gating and anion permeability of an intracellular aquaporin. Nature 402:184–187PubMedCrossRefGoogle Scholar
  153. Yu JJ, Smithson SL, Thomas PW, Kirkland TN, Cole GT (1997) Isolation and characterization of the urease gene (URE) from the pathogenic fungus Coccidioides immitis. Gene 198:387–391PubMedCrossRefGoogle Scholar
  154. Zampighi GA, Hall JE, Kreman M (1985) Purified lens junctional protein forms channels in planar lipid films. Proc Natl Acad Sci USA 82:8468–8472PubMedCentralPubMedCrossRefGoogle Scholar
  155. Zardoya R (2005) Phylogeny and evolution of the major intrinsic protein family. Biol Cell 97:397–414PubMedCrossRefGoogle Scholar
  156. Zardoya R, Villalba S (2001) A phylogenetic framework for the aquaporin family in eukaryotes. J Mol Evol 52:391–404PubMedGoogle Scholar
  157. Zardoya R, Ding X, Kitagawa Y, Chrispeels MJ (2002) Origin of plant glycerol transporters by horizontal gene transfer and functional recruitment. Proc Natl Acad Sci USA 99:14893–14896PubMedCentralPubMedCrossRefGoogle Scholar
  158. Zelazny E, Borst JW, Muylaert M, Batoko H, Hemminga MA, Chaumont F (2007) FRET imaging in living maize cells reveals that plasma membrane aquaporins interact to regulate their subcellular localization. Proc Natl Acad Sci USA 104:12359–12364PubMedCentralPubMedCrossRefGoogle Scholar
  159. Zeuthen T, Meinild AK, Klaerke DA, Loo DD, Wright EM, Belhage B, Litman T (1997) Water transport by the Na+/glucose cotransporter under isotonic conditions. Biol Cell 89:307–312PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Juliana Perez Di Giorgio
    • 1
  • Gabriela Soto
    • 1
    • 5
  • Karina Alleva
    • 2
    • 3
  • Cintia Jozefkowicz
    • 2
    • 3
  • Gabriela Amodeo
    • 2
    • 3
  • Jorge Prometeo Muschietti
    • 1
    • 3
  • Nicolás Daniel Ayub
    • 4
    • 5
  1. 1.Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Hector Torres (INGEBI-CONICET)Buenos AiresArgentina
  2. 2.Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA, CONICET-UBA)Buenos AiresArgentina
  3. 3.Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos AiresBuenos AiresArgentina
  4. 4.Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina
  5. 5.Instituto de Genética Ewald A. Favret (CICVyA-INTA)Buenos AiresArgentina

Personalised recommendations