The Journal of Membrane Biology

, Volume 246, Issue 11, pp 843–850 | Cite as

On the Electroporation Thresholds of Lipid Bilayers: Molecular Dynamics Simulation Investigations

  • Andraž Polak
  • Daniel Bonhenry
  • François Dehez
  • Peter Kramar
  • Damijan Miklavčič
  • Mounir TarekEmail author


Electroporation relates to the cascade of events that follows the application of high electric fields and that leads to cell membrane permeabilization. Despite a wide range of applications, little is known about the electroporation threshold, which varies with membrane lipid composition. Here, using molecular dynamics simulations, we studied the response of dipalmitoyl-phosphatidylcholine, diphytanoyl-phosphocholine-ester and diphytanoyl-phosphocholine-ether lipid bilayers to an applied electric field. Comparing between lipids with acyl chains and methyl branched chains and between lipids with ether and ester linkages, which change drastically the membrane dipole potential, we found that in both cases the electroporation threshold differed substantially. We show, for the first time, that the electroporation threshold of a lipid bilayer depends not only on the “electrical” properties of the membrane, i.e., its dipole potential, but also on the properties of its component hydrophobic tails.


Capacitance Electroporation threshold Membrane dipole potential DPPC DPhPC 



This work was in part supported by the Slovenian Research Agency. Research was conducted in the scope of the EBAM European Associated Laboratory. The article is a result of the networking efforts of COST Action TD1104. Part of the calculations and the finalization of the article was performed during the Short-Term Scientific Mission (Grant 070113-021794, to A. P.). Simulations were performed using HPC resources from GENCI-CINES (Grant 2012-076434). The authors thank the ANR Intcell program (ANR-10-BLAN-096).


  1. Antonov VF, Smirnova EY, Shevchenko EV (1990) Electric field increases the phase transition temperature in the bilayer membrane of phosphatidic acid. Chem Phys Lipids 52:251–257CrossRefPubMedGoogle Scholar
  2. Benvegnu T, Brard M, Plusquellec D (2004) Archaeabacteria bipolar lipid analogues: structure, synthesis and lyotropic properties. Curr Opin Colloid Interface Sci 8:469–479CrossRefGoogle Scholar
  3. Breton M, Delemotte L, Silve A, Mir LM, Tarek M (2012) Nanosecond pulsed electric field driven transport of siRNA molecules through lipid membranes: an experimental and computational study. J Am Chem Soc 134:13938–13941CrossRefPubMedGoogle Scholar
  4. Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N·log(N) method for Ewald sums in large systems. J Chem Phys 98:10089CrossRefGoogle Scholar
  5. Daud AI, DeConti RC, Andrews S et al (2008) Phase I trial of interleukin-12 plasmid electroporation in patients with metastatic melanoma. J Clin Oncol 26:5896–5903PubMedCentralCrossRefPubMedGoogle Scholar
  6. Davalos RV, Mir LM, Rubinsky B (2005) Tissue ablation with irreversible electroporation. Ann Biomed Eng 33:223–231CrossRefPubMedGoogle Scholar
  7. Delemotte L, Tarek M (2012) Molecular dynamics simulations of lipid membrane electroporation. J Membr Biol 245:531–543CrossRefPubMedGoogle Scholar
  8. Delemotte L, Dehez F, Treptow W, Tarek M (2008) Modeling membranes under a transmembrane potential. J Phys Chem B 112:5547–5550CrossRefPubMedGoogle Scholar
  9. Denet A-R, Vanbever R, Préat V (2004) Skin electroporation for transdermal and topical delivery. Adv Drug Deliv Rev 56:659–674CrossRefPubMedGoogle Scholar
  10. Elbayoumi TA, Torchilin VP (2010) Current trends in liposome research. Methods Mol Biol 605:1–27CrossRefPubMedGoogle Scholar
  11. Essmann U, Perera L, Berkowitz ML et al (1995) A smooth particle mesh Ewald method. J Chem Phys 103:8577CrossRefGoogle Scholar
  12. Fernández ML, Marshall G, Sagués F, Reigada R (2010) Structural and kinetic molecular dynamics study of electroporation in cholesterol-containing bilayers. J Phys Chem B 114:6855–6865CrossRefPubMedGoogle Scholar
  13. Gawrisch K, Ruston D, Zimmerberg J et al (1992) Membrane dipole potentials, hydration forces, and the ordering of water at membrane surfaces. Biophys J 61:1213–1223PubMedCentralCrossRefPubMedGoogle Scholar
  14. Haberl S, Miklavcic D, Sersa G et al (2013) Cell membrane electroporation—part 2. The applications. IEEE Electr Insulation Mag 29:29–37CrossRefGoogle Scholar
  15. Hanford MJ, Peeples TL (2002) Archaeal tetraether lipids: unique structures and applications. Appl Biochem Biotechnol 97:45–62CrossRefPubMedGoogle Scholar
  16. Kalé L, Skeel R, Bhandarkar M et al (1999) NAMD2: greater scalability for parallel molecular dynamics. J Comput Phys 151:283–312CrossRefGoogle Scholar
  17. Klauda JB, Venable RM, Freites JA et al (2010) Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. J Phys Chem B 114:7830–7843PubMedCentralCrossRefPubMedGoogle Scholar
  18. Kramar P, Delemotte L, Lebar AM et al (2012) Molecular-level characterization of lipid membrane electroporation using linearly rising current. J Membr Biol 245:651–659CrossRefPubMedGoogle Scholar
  19. Kucerka N, Nagle JF, Sachs JN et al (2008) Lipid bilayer structure determined by the simultaneous analysis of neutron and X-ray scattering data. Biophys J 95:2356–2367PubMedCentralCrossRefPubMedGoogle Scholar
  20. Levine ZA, Vernier PT (2010) Life cycle of an electropore: field-dependent and field-independent steps in pore creation and annihilation. J Membr Biol 236:27–36CrossRefPubMedGoogle Scholar
  21. Lindahl E, Edholm O (2000) Spatial and energetic–entropic decomposition of surface tension in lipid bilayers from molecular dynamics simulations. J Chem Phys 113:3882CrossRefGoogle Scholar
  22. Napotnik TB, Rebersek M, Kotnik T et al (2010) Electropermeabilization of endocytotic vesicles in B16 F1 mouse melanoma cells. Med Biol Eng Comput 48:407–413PubMedCentralCrossRefPubMedGoogle Scholar
  23. Needham D, Hochmuth RM (1989) Electro-mechanical permeabilization of lipid vesicles. Role of membrane tension and compressibility. Biophys J 55:1001–1009PubMedCentralCrossRefPubMedGoogle Scholar
  24. Neumann E, Rosenheck K (1972) Permeability changes induced by electric impulses in vesicular membranes. J Membr Biol 10:279–290CrossRefPubMedGoogle Scholar
  25. Peterson U, Mannock DA, Lewis RNA et al (2002) Origin of membrane dipole potential: contribution of the phospholipid fatty acid chains. Chem Phys Lipids 117:19–27CrossRefPubMedGoogle Scholar
  26. Portet T, Camps I, Febrer F, Escoffre J-M et al (2009) Visualization of membrane loss during the shrinkage of giant vesicles under electropulsation. Biophys J 96:4109–4121PubMedCentralCrossRefPubMedGoogle Scholar
  27. Ridi A, Scalas E, Robello M, Gliozzi A (1998) Linear response of a fluctuating lipid bilayer. Thin Solid Films 327–329:796–799CrossRefGoogle Scholar
  28. Sachs JN, Crozier PS, Woolf TB (2004) Atomistic simulations of biologically realistic transmembrane potential gradients. J Chem Phys 121:10847–10851CrossRefPubMedGoogle Scholar
  29. Sersa G, Miklavcic D, Cemazar M et al (2008) Electrochemotherapy in treatment of tumours. Eur J Surg Oncol 34:232–240CrossRefPubMedGoogle Scholar
  30. Shinoda W, Mikami M, Baba T, Hato M (2003) Molecular dynamics study on the effect of chain branching on the physical properties of lipid bilayers: structural stability. J Phys Chem B 107:14030–14035CrossRefGoogle Scholar
  31. Shinoda K, Shinoda W, Baba T, Mikami M (2004a) Comparative molecular dynamics study of ether- and ester-linked phospholipid bilayers. J Chem Phys 121:9648–9654CrossRefPubMedGoogle Scholar
  32. Shinoda W, Mikami M, Baba T, Hato M (2004b) Molecular dynamics study on the effects of chain branching on the physical properties of lipid bilayers: 2. Permeability. J Phys Chem B 108:9346–9356CrossRefGoogle Scholar
  33. Tarek M (2005) Membrane electroporation: a molecular dynamics simulation. Biophys J 88:4045–4053PubMedCentralCrossRefPubMedGoogle Scholar
  34. Tieleman DP (2004) The molecular basis of electroporation. BMC Biochem 5:10PubMedCentralCrossRefPubMedGoogle Scholar
  35. Tockman M, Lee JH, Levine ZA, Ho M-C, Colvin ME, Vernier PT (2013) Electric field-driven water dipoles: nanoscale architecture of electroporation. PLoS One 8(4):e61111CrossRefGoogle Scholar
  36. Toepfl S, Heinz V, Knorr D (2007) High intensity pulsed electric fields applied for food preservation. Chem Eng Process 46:537–546CrossRefGoogle Scholar
  37. Ulrih NP, Gmajner D, Raspor P (2009) Structural and physicochemical properties of polar lipids from thermophilic Archaea. Appl Microbiol Biotechnol 84:249–260CrossRefPubMedGoogle Scholar
  38. Vernhes M, Benichou A, Pernin P et al (2002) Elimination of free-living amoebae in fresh water with pulsed electric fields. Water Res 36:3429–3438CrossRefPubMedGoogle Scholar
  39. Wang L, Bose PS, Sigworth FJ (2006) Using cryo-EM to measure the dipole potential of a lipid membrane. Proc Natl Acad Sci USA 103:18528–18533PubMedCentralCrossRefPubMedGoogle Scholar
  40. Wu Y, He K, Ludtke SJ, Huang HW (1995) X-ray diffraction study of lipid bilayer membranes interacting with amphiphilic helical peptides: diphytanoyl phosphatidylcholine with alamethicin at low concentrations. Biophys J 68:2361–2369PubMedCentralCrossRefPubMedGoogle Scholar
  41. Ziegler MJ, Vernier PT (2008) Interface water dynamics and porating electric fields for phospholipid bilayers. J Phys Chem B 112:13588–13596CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Andraž Polak
    • 1
  • Daniel Bonhenry
    • 2
  • François Dehez
    • 2
  • Peter Kramar
    • 1
  • Damijan Miklavčič
    • 1
  • Mounir Tarek
    • 2
    Email author
  1. 1.Faculty of Electrical EngineeringUniversity of LjubljanaLjubljanaSlovenia
  2. 2.CNRS, Unité Mixte de Recherche 7565Université de LorraineNancy CedexFrance

Personalised recommendations