The Journal of Membrane Biology

, Volume 246, Issue 2, pp 91–100 | Cite as

Role of Contrast Media on Oxidative Stress, Ca2+ Signaling and Apoptosis in Kidney

  • Mustafa NazıroğluEmail author
  • Neslihan Yoldaş
  • Esra Nur Uzgur
  • Mustafa Kayan


Contrast media (CM)-induced nephropathy is a common cause of iatrogenic acute renal failure. The aim of the present review was to discuss the mechanisms and risk factors of CM, to summarize the controlled studies evaluating measures for prevention and to conclude with evidence-based strategies for prevention. A review of the relevant literature and results from recent clinical studies as well as critical analyses of published systematic reviews used MEDLINE and the Science Citation Index. The cytotoxicity induced by CM leads to apoptosis and death of endothelial and tubular cells and may be initiated by cell membrane damage together with reactive oxygen species (ROS) and inflammation. Cell damage may be aggravated by factors such as tissue hypoxia, properties of individual CM such as ionic strength, high osmolarity and/or viscosity. Clinical studies indeed support this possibility, suggesting a protective effect of ROS scavenging with the administration of N-acetylcysteine, ascorbic acid erdosteine, glutathione and bicarbonate infusion. The interaction between extracellular Ca2+, which plays a central role in intercellular contacts and production of ROS, and the in vitro toxicity of CM was also reviewed. The current review addresses the role of oxidative stress in the pathogenesis of CM in the kidney as well as current and potential novel treatment modalities for the prevention of neutrophil activation and CM-induced kidney degeneration in patients. ROS production through CM-induced renal hypoxia may exert direct tubular and vascular endothelial injury. Preventive strategies via antioxidant supplementation include inhibition of ROS generation or scavenging.


Apoptosis Radiocontrast media Calcium ion Oxidative stress Mitochondria 





Contrast media


Glutathione peroxidase


Malonyl dialdehyde


N-acetyl cysteine


Reactive oxygen substances


Superoxide dismutase


Xanthine oxidase



There was no financial support or conflict interest for the current study.


  1. Allaqaband S, Tumuluri R, Malik AM, Gupta A, Volkert P, Shalev Y, Bajwa TK (2002) Prospective randomized study of N-acetylcysteine, fenoldopam, and saline for prevention of radiocontrast-induced nephropathy. Catheter Cardiovasc Interv 57:279–283PubMedCrossRefGoogle Scholar
  2. Amulic B, Cazalet C, Hayes GL, Metzler KD, Zychlinsky A (2012) Neutrophil function: from mechanisms to disease. Annu Rev Immunol 30:459–489.Google Scholar
  3. Andersen S, Jacobsen P, Tarnow L, Rossing P, Juhl TR, Parving HH (2003) Time course of the antiproteinuric and antihypertensive effect of losartan in diabetic nephropathy. Nephrol Dial Transplant 18:293–297PubMedCrossRefGoogle Scholar
  4. Ayub K, Hallett MB (2004) Ca2+ influx shutdown during neutrophil apoptosis: importance and possible mechanism. Immunology 1:8–12CrossRefGoogle Scholar
  5. Bakris GL, Lass N, Gaber AO, Jones JD, Burnett JC (1990) Radiocontrast medium-induced declines in renal function: a role for oxygen free radicals. Am J Physiol Renal Physiol 258:F115–F120Google Scholar
  6. Beeri R, Symon Z, Brezis M, Ben-Sasson SA, Baehr PH, Rosen S, Zager RA (1995) Rapid DNA fragmentation from hypoxia along the thick ascending limb of rat kidneys. Kidney Int 47:1806–1810PubMedCrossRefGoogle Scholar
  7. Bréchard S, Tschirhart EJ (2008) Regulation of superoxide production in neutrophils: role of calcium influx. J Leukoc Biol 84:1223–1237Google Scholar
  8. Böhm I, Speck U, Schild H (2008) Cell-dependent influence on the phagocytosis induced by non-ionic contrast medium injection. Br J Radiol 81:199–203PubMedCrossRefGoogle Scholar
  9. Boron WF (2006) Acid-base transport by the renal proximal tubule. J Am Soc Nephrol 17:2368–2382PubMedCrossRefGoogle Scholar
  10. Briguori C, Manganelli F, Scarpato P, Elia PP, Golia B, Riviezzo G, Lepore S, Librera M, Villari B, Colombo A, Ricciardelli B (2002) Acetylcysteine and contrast agent-associated nephrotoxicity. J Am Coll Cardiol 40:298–303PubMedCrossRefGoogle Scholar
  11. Briguori C, Colombo A, Airoldi F, Violante A, Castelli A, Balestrieri P, Paolo Elia P, Golia B, Lepore S, Riviezzo G, Scarpato P, Librera M, Focaccio A, Ricciardelli B (2004) N-acetylcysteine versus fenoldopam mesylate to prevent contrast agent-associated nephrotoxicity. J Am Coll Cardiol 44:762–765PubMedCrossRefGoogle Scholar
  12. Briguori C, Airoldi F, D’Andrea D, Bonizzoni E, Morici N, Focaccio A, Michev I, Montorfano M, Carlino M, Cosgrave J, Ricciardelli B, Colombo A (2007) Renal insufficiency following contrast media administration trial (REMEDIAL): a randomized comparison of 3 preventive strategies. Circulation 115:1211–1217PubMedGoogle Scholar
  13. Brugnara C, De Franceschi L, Alper SL (1993) Ca+2 activated K+ transport in erythrocytes. Comparison of binding and transport inhibition by scorpion toxins. J Biol Chem 268:8760–8768PubMedGoogle Scholar
  14. Carmona-Sánchez R, Uscanga L, Bezaury-Rivas P, Robles-Díaz G, Suazo-Barahona J, Vargas-Vorácková F (2000) Potential harmful effect of iodinated intravenous contrast medium on the clinical course of mild acute pancreatitis. Arch Surg 135:1280–1284PubMedCrossRefGoogle Scholar
  15. Cetin M, Devrim E, Serin Kiliçoglu S, Ergüder IB, Namuslu M, Cetin R, Durak I (2008) Ionic high-osmolar contrast medium causes oxidant stress in kidney tissue: partial protective role of ascorbic acid. Ren Fail 30:567–572PubMedCrossRefGoogle Scholar
  16. Dekkers DW, Comfurius P, Bevers EM, Zwaal RF (2002) Comparison between Ca2+ induced scrambling of various fluorescently labelled lipid analogues in red blood cells. Biochem J 362:741–747PubMedCrossRefGoogle Scholar
  17. Demiralay R, Gürsan N, Ozbilim G, Erdogan G, Demirci E (2006) Comparison of the effects of erdosteine and N-acetylcysteine on apoptosis regulation in endotoxin-induced acute lung injury. J Appl Toxicol 26:301–308PubMedCrossRefGoogle Scholar
  18. Drager LF, Andrade L, Barros de Toledo JF, Laurindo FR, Machado César LA, Seguro AC (2004) Renal effects of N-acetylcysteine in patients at risk for contrast nephropathy: decrease in oxidant stress-mediated renal tubular injury. Nephrol Dial Transplant 19:1803–1807PubMedCrossRefGoogle Scholar
  19. Ege E, Ilhan A, Gurel A, Akyol O, Ozen S (2004) Erdosteine ameliorates neurological outcome and oxidative stress due to ischemia/reperfusion injury in rabbit spinal cord. Eur J Vasc Endovasc Surg 28:379–386PubMedCrossRefGoogle Scholar
  20. Elmståhl B, Nyman U, Leander P, Golman K, Chai CM, Grant D, Doughty R, Pehrson R, Björk J, Almén T (2008) Iodixanol 320 results in better renal tolerance and radiodensity than do gadolinium-based contrast media: arteriography in ischemic porcine kidneys. Radiology 247:88–97PubMedCrossRefGoogle Scholar
  21. Fanning NF, Kell MR, Shorten GD, Kirwan WO, Bouchier-Hayes D, Cotter TG, Redmond HP (1999) Circulating granulocyte macrophage colony-stimulating factor in plasma of patients with the systemic inflammatory response syndrome delays neutrophil apoptosis through inhibition of spontaneous reactive oxygen species generation. Shock 11:167–174PubMedCrossRefGoogle Scholar
  22. Fanning NF, Manning BJ, Buckley J, Redmond HP (2002) Iodinated contrast media induce neutrophil apoptosis through a mitochondrial and caspase mediated pathway. Br J Radiol 75:861–873PubMedGoogle Scholar
  23. Farrow R, Roobottom CA, Wells IP, Hurlock N (1994) Effects of radiographic contrast media on leukocyte phagocytosis. Acad Radiol 1:249–252PubMedCrossRefGoogle Scholar
  24. Goldenberg I, Matetzky S (2005) Nephropathy induced by contrast media: pathogenesis, risk factors and preventive strategies. CMAJ 172:1461–1471PubMedGoogle Scholar
  25. Haag-Weber M, Hörl WH (1994) Effect of calcium channel blockers on intracellular calcium accumulation. Nephrol Dial Transplant 9(Suppl 3):24–27PubMedGoogle Scholar
  26. Haeussler U, Riedel M, Keller F (2004) Free reactive oxygen species and nephrotoxicity of contrast agents. Kidney Blood Press Res 27:167–171PubMedCrossRefGoogle Scholar
  27. Harmon RC, Terneus MV, Kiningham KK, Valentovic M (2005) Time-dependent effect of p-aminophenol (PAP) toxicity in renal slices and development of oxidative stress. Toxicol Appl Pharmacol 209:86–94PubMedCrossRefGoogle Scholar
  28. Harmon RC, Duffy SP, Terneus MV, Ball JG, Valentovic MA (2009) Characterization of a novel model for investigation of radiocontrast nephrotoxicity. Nephrol Dial Transplant 24:763–768PubMedCrossRefGoogle Scholar
  29. Heller A, Heller S, Blecken S, Urbaschek R, Koch T (1998) Effects of intravenous anesthetics on bacterial elimination in human blood in vitro. Acta Anaesthesiol Scand 42:518–526PubMedCrossRefGoogle Scholar
  30. Heyman SN, Rosen S, Khamaisi M, Idée JM, Rosenberger C (2010) Reactive oxygen species and the pathogenesis of radiocontrast-induced nephropathy. Invest Radiol 45:188–195PubMedCrossRefGoogle Scholar
  31. Huber W, Jeschke B, Page M, Weiss W, Salmhofer H, Schweigart U, Ilgmann K, Reichenberger J, Neu B, Classen M (2001) Reduced incidence of radiocontrast-induced nephropathy in ICU patients under theophylline prophylaxis: a prospective comparison to series of patients at similar risk. Intensive Care Med 27:1200–1209PubMedCrossRefGoogle Scholar
  32. Kaestner L, Tabellion W, Lipp P, Bernhardt I (2004) Prostaglandin E2 activates channel-mediated calcium entry in human erythrocytes: an indication for a blood clot formation supporting process. Thromb Haemost 92:1269–1272PubMedGoogle Scholar
  33. Kayan M, Nazıroğlu M, Ovey IS, Aykur M, Uğuz AC, Yürekli VA (2012) Non-ionic contrast media induces oxidative stress and apoptosis through Ca(2+) influx in human neutrophils. J Membr Biol [Epub ahead of print]Google Scholar
  34. Kempe DS, Lang PA, Duranton C, Akel A, Lang KS, Huber SM, Wieder T, Lang F (2006) Enhanced programmed cell death of iron-deficient erythrocytes. FASEB J 20:368–370PubMedGoogle Scholar
  35. Klarl BA, Lang PA, Kempe DS, Niemoeller OM, Akel A, Sobiesiak M, Eisele K, Podolski M, Huber SM, Wieder T, Lang F (2006) Protein kinase C mediates erythrocyte “programmed cell death” following glucose depletion. Am J Physiol Cell Physiol 290:C244–C253PubMedCrossRefGoogle Scholar
  36. Korkmaz S, Erturan I, Nazıroğlu M, Uğuz AC, Ciğ B, Övey IS (2011) Colchicine modulates oxidative stress in serum and neutrophil of patients with Behçet disease through regulation of Ca²+ release and antioxidant system. J Membr Biol 244:113–120PubMedCrossRefGoogle Scholar
  37. Kovacic P, Somanathan R (2008) Unifying mechanism for eye toxicity: electron transfer, reactive oxygen species, antioxidant benefits, cell signaling and cell membranes. Cell Membr Free Radic Res 2:56–69Google Scholar
  38. Kshirsagar AV, Poole C, Mottl A, Shoham D, Franceschini N, Tudor G, Agrawal M, Denu-Ciocca C, Magnus Ohman E, Finn WF (2004) N-acetylcysteine for the prevention of radiocontrast induced nephropathy: a meta-analysis of prospective controlled trials. J Am Soc Nephrol 15:761–769PubMedCrossRefGoogle Scholar
  39. Kusaba N, Kumashiro R, Ogata H, Sata M, Tanikawa K (1998) In vitro study of neutrophil apoptosis in liver cirrhosis. Intern Med 37:11–17PubMedCrossRefGoogle Scholar
  40. Lancelot E, Idée JM, Couturier V, Vazin V, Corot C (1999) Influence of the viscosity of iodixanol on medullary and cortical blood flow in the rat kidney: a potential cause of nephrotoxicity. J Appl Toxicol 19:341–346PubMedCrossRefGoogle Scholar
  41. Lang F, Gulbins E, Lerche H, Huber SM, Kempe DS, Foller M (2008) Eryptosis, a window to systemic disease. Cell Physiol Biochem 22:373–380PubMedCrossRefGoogle Scholar
  42. Lash LH, Hueni SE, Putt DA, Zalups RK (2005) Role of organic anion and amino acid carriers in transport of inorganic mercury in rat renal basolateral membrane vesicles: influence of compensatory renal growth. Toxicol Sci 88:630–644PubMedCrossRefGoogle Scholar
  43. Lee HC, Sheu SH, Liu IH, Lee CC, Hsieh CC, Yen HW, Lai WT, Chang JG (2012) Impact of short-duration administration of N-acetylcysteine, probucol and ascorbic acid on contrast-induced cytotoxicity. J Nephrol 25:56–62.Google Scholar
  44. Lillevang ST, Albertsen M, Rasmussen F, Georgsen J, Egund N (1994) Effect of radiographic contrast media on granulocyte phagocytosis of Escherichia coli in a whole blood flow cytometric assay. Invest Radiol 29:68–71PubMedCrossRefGoogle Scholar
  45. Lindholt JS (2003) Radiocontrast induced nephropathy. Eur J Vasc Endovasc Surg 25:296–304PubMedCrossRefGoogle Scholar
  46. Marasa BS, Xiao L, Rao JN, Zou T, Liu L, Wang J, Bellavance E, Turner DJ, Wang JY (2008) Induced TRPC1 expression increases protein phosphatase 2A sensitizing intestinal epithelial cells to apoptosis through inhibition of NF-kappaB activation. Am J Physiol Cell Physiol 294:C1277–C1287PubMedCrossRefGoogle Scholar
  47. Marenzi G, Assanelli E, Marana I, Lauri G, Campodonico J, Grazi M, De Metrio M, Galli S, Fabbiocchi F, Montorsi P, Veglia F, Bartorelli AL (2006) N-acetylcysteine and contrast-induced nephropathy in primary angioplasty. N Engl J Med 354:2773–2782PubMedCrossRefGoogle Scholar
  48. Mathai JP, Germain M, Shore GC (2005) BH3-only BIK regulates BAX, BAK-dependent release of Ca2+ from endoplasmic reticulum stores and mitochondrial apoptosis during stress-induced cell death. J Biol Chem 280:23829–23836PubMedCrossRefGoogle Scholar
  49. Merten GJ, Burgess WP, Gray LV, Holleman JH, Roush TS, Kowalchuk GJ, Bersin RM, Van Moore A, Simonton CA 3rd, Rittase RA, Norton HJ, Kennedy TP (2004) Prevention of contrast induced nephropathy with sodium bicarbonate: a randomized controlled trial. JAMA 291:2328–2334PubMedCrossRefGoogle Scholar
  50. Nazıroglu M (2009) Role of selenium on calcium signaling and oxidative stress-induced molecular pathways in epilepsy. Neurochem Res 34:2181–2191PubMedCrossRefGoogle Scholar
  51. Nazıroğlu M (2007) New molecular mechanisms on the activation of TRPM2 channels by oxidative stress and ADP-ribose. Neurochem Res 32:1990–2001PubMedCrossRefGoogle Scholar
  52. Nicot GS, Merle LJ, Charmes JP, Valette JP, Nouaille YD, Lachâtre GF, Leroux-Robert C (1984) Transient glomerular proteinuria, enzymuria, and nephrotoxic reaction induced by radiocontrast media. JAMA 252:2432–2434PubMedCrossRefGoogle Scholar
  53. Pannu N, Manns B, Lee H, Tonelli M (2004) Systematic review of the impact of N-acetylcysteine on contrast nephropathy. Kidney Int 65:1366–1374PubMedCrossRefGoogle Scholar
  54. Parfrey PS, Griffiths SM, Barrett BJ, Paul MD, Genge M, Withers J, Farid N, McManamon PJ (1989) Contrast material-induced renal failure in patients with diabetes mellitus, renal insufficiency, or both. A prospective controlled study. N Engl J Med 320:143–149PubMedCrossRefGoogle Scholar
  55. Romano G, Briguori C, Quintavalle C, Zanca C, Rivera NV, Colombo A, Condorelli G (2008) Contrast agents and renal cell apoptosis. Eur Heart J 29:2569–2576PubMedCrossRefGoogle Scholar
  56. Safirstein R, Andrade L, Vieira JM (2000) Acetylcysteine and nephrotoxic effects of radiographic contrast agents—a new use for an old drug. N Engl J Med 343:210–212PubMedCrossRefGoogle Scholar
  57. Sahin M, Uğuz AC, Demirkan H, Nazıroğlu M (2011) Colchicine modulates oxidative stress in serum and leucocytes from remission patients with family Mediterranean fever through regulation of Ca²+ release and the antioxidant system. J Membr Biol 240:55–62PubMedCrossRefGoogle Scholar
  58. Savill J (1997) Apoptosis in resolution of inflammation. J Leukoc Biol 61:375–380PubMedGoogle Scholar
  59. Schick CS, Bangert R, Kübler W, Haller C (2002) Ionic radiocontrast media disrupt intercellular contacts via an extracellular calcium-independent mechanism. Exp Nephrol 10:209–215PubMedCrossRefGoogle Scholar
  60. Sheridan AM, Bonventre JV (2001) Pathophysiology of ischemic acute renal failure. Contrib Nephrol 132:7–21PubMedCrossRefGoogle Scholar
  61. Spargias K, Alexopoulos E, Kyrzopoulos S, Iokovis P, Greenwood DC, Manginas A, Voudris V, Pavlides G, Buller CE, Kremastinos D, Cokkinos DV (2004) Ascorbic acid prevents contrast-mediated nephropathy in patients with renal dysfunction undergoing coronary angiography or intervention. Circulation 110:2837–2842PubMedCrossRefGoogle Scholar
  62. Tadros SF, D’Souza M, Zhu X, Frisina RD (2008) Apoptosis-related genes change their expression with age and hearing loss in the mouse cochlea. Apoptosis 13:1303–1321PubMedCrossRefGoogle Scholar
  63. Tepel M, van der Giet M, Schwarzfeld C, Laufer U, Liermann D, Zidek W (2000) Prevention of radiographic-contrast-agent-induced reductions in renal function by acetylcysteine. N Engl J Med 343:180–184PubMedCrossRefGoogle Scholar
  64. Toprak O, Cirit M, Tanrisev M, Yazici C, Canoz O, Sipahioglu M, Uzum A, Ersoy R, Sozmen EY (2008) Preventive effect of nebivolol on contrast-induced nephropathy in rats. Nephrol Dial Transplant 23:853–859PubMedCrossRefGoogle Scholar
  65. Trivedi HS, Moore H, Nasr S, Aggarwal K, Agrawal A, Goel P, Hewett J (2003) A randomized prospective trial to assess the role of saline hydration on the development of contrast nephrotoxicity. Nephron Clin Pract 93:C29–C34PubMedCrossRefGoogle Scholar
  66. Tumlin JA, Wang A, Murray PT, Mathur VS (2002) Fenoldopam mesylate blocks reductions in renal plasma flow after radiocontrast dye infusion: a pilot trial in the prevention of contrast nephropathy. Am Heart J 143:894–903PubMedCrossRefGoogle Scholar
  67. Veverka A, Nuzum DS, Jolly JL (2006) Nebivolol: a third-generation beta-adrenergic blocker. Ann Pharmacother 40:1353–1360PubMedCrossRefGoogle Scholar
  68. Xiong XL, Jia RH, Yang DP, Ding GH (2006) Irbesartan attenuates contrast media-induced NRK-52E cells apoptosis. Pharmacol Res 54:253–260PubMedCrossRefGoogle Scholar
  69. Yasuhara S, Asai A, Sahani ND, Martyn JA (2007) Mitochondria, endoplasmic reticulum, and alternative pathways of cell death in critical illness. Crit Care Med 35:S488–S495PubMedCrossRefGoogle Scholar
  70. Yesildağ A, Ozden A, Yilmaz HR, Uz E, Ağackiran Y, Yesildağ M, Yilmaz N, Sirmali R, Vural H, Naziroğlu M (2009) Erdosteine modulates radiocontrast-induced hepatotoxicity in rat. Cell Biochem Funct 27:142–147Google Scholar
  71. Yesilyurt A, Aydın Erden I, Bilgiç I, Erden G, Albayrak A (2011) The protective effect of erdosteine on radiocontrast induced nephrotoxicity in rats. Environ Toxicol 26:395–402Google Scholar
  72. Yoshioka T, Fogo A, Beckman JK (1992) Reduced activity of antioxidant enzymes underlies contrast media-induced renal injury in volume depletion. Kidney Int 41:1008–1015PubMedCrossRefGoogle Scholar
  73. Zager RA, Conrad DS, Burkhart K (1996) Phospholipase A2: a potentially important determinant of adenosine triphosphate levels during hypoxic-reoxygenation tubular injury. J Am Soc Nephrol 7:2327–2339PubMedGoogle Scholar
  74. Zager RA, Johnson AC, Hanson SY (2003) Radiographic contrast media-induced tubular injury: evaluation of oxidant stress and plasma membrane integrity. Kidney Int 64:128–139PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Mustafa Nazıroğlu
    • 1
    Email author
  • Neslihan Yoldaş
    • 2
  • Esra Nur Uzgur
    • 2
  • Mustafa Kayan
    • 3
  1. 1.Department of Biophysics, Faculty of MedicineSüleyman Demirel UniversityIspartaTurkey
  2. 2.Faculty of MedicineSüleyman Demirel UniversityIspartaTurkey
  3. 3.Department of Radiology, Faculty of MedicineSüleyman Demirel UniversityIspartaTurkey

Personalised recommendations