Advertisement

The Journal of Membrane Biology

, Volume 245, Issue 10, pp 651–659 | Cite as

Molecular-Level Characterization of Lipid Membrane Electroporation using Linearly Rising Current

  • Peter Kramar
  • Lucie Delemotte
  • Alenka Maček Lebar
  • Malgorzata Kotulska
  • Mounir Tarek
  • Damijan Miklavčič
Article

Abstract

We present experimental and theoretical results of electroporation of small patches of planar lipid bilayers by means of linearly rising current. The experiments were conducted on ~120-μm-diameter patches of planar phospholipid bilayers. The steadily increasing voltage across the bilayer imposed by linearly increasing current led to electroporation of the membrane for voltages above a few hundred millivolts. This method shows new molecular mechanisms of electroporation. We recorded small voltage drops preceding the breakdown of the bilayer due to irreversible electroporation. These voltage drops were often followed by a voltage re-rise within a fraction of a second. Modeling the observed phenomenon by equivalent electric circuits showed that these events relate to opening and closing of conducting pores through the bilayer. Molecular dynamics simulations performed under similar conditions indicate that each event is likely to correspond to the opening and closing of a single pore of about 5 nm in diameter, the conductance of which ranges in the 100-nS scale. This combined experimental and theoretical investigation provides a better quantitative characterization of the size, conductance and lifetime of pores created during lipid bilayer electroporation. Such a molecular insight should enable better control and tuning of electroporation parameters for a wide range of biomedical and biotechnological applications.

Keywords

Planar lipid bilayer Linear rising current Molecular dynamics simulation 

Notes

Acknowledgements

This work was in part supported by various grants from the Slovenian Research Agency and bilateral cooperation programs between Poland and Slovenia and between France and Slovenia (PROTEUS). The research was conducted in the scope of the EBAM European Associated Laboratory. Simulations were performed using HPC resources from GENCI-CINES (Grant 2010-075137). We thank A. Burmen for valuable discussion regarding SPICE modeling. M. T. acknowledges the support of the French Agence Nationale de la Recherche (Grant ANR-10_BLAN-916-03-INTCELL).

References

  1. Benz R, Janko K (1976) Voltage-induced capacitance relaxation of lipid bilayer membranes: effects of membrane composition. Biochim Biophys Acta 455:721–738PubMedCrossRefGoogle Scholar
  2. Bockmann RA, de Groot BL, Kakorin S et al (2008) Kinetics, statistics, and energetics of lipid membrane electroporation studied by molecular dynamics simulations. Biophys J 95:1837–1850PubMedCrossRefGoogle Scholar
  3. Darden T, York D, Pedersen L (1993) Particle mesh Ewald—an n.log(n) method for Ewald sums in large systems. J Chem Phys 98:10089–10092CrossRefGoogle Scholar
  4. Delemotte L, Dehez F, Treptow W, Tarek M (2008) Modeling membranes under a transmembrane potential. J Phys Chem B 112:5547–5550PubMedCrossRefGoogle Scholar
  5. Essmann U, Perera L, Berkowitz M et al (1995) A smooth particle mesh Ewald method. J Chem Phys 103:8577–8593CrossRefGoogle Scholar
  6. Genco I, Gliozzi A, Relini A et al (1993) Electroporation in symmetric and asymmetric membranes. Biochim Biophys Acta 1149:10–18PubMedCrossRefGoogle Scholar
  7. Glaser R, Leikin S, Chernomordik L et al (1988) Reversible electrical breakdown of lipid bilayers—formation and evolution of pores. Biochim Biophys Acta 940:275–287PubMedCrossRefGoogle Scholar
  8. Golzio M, Teissie J, Rols M (2002) Direct visualization at the single-cell level of electrically mediated gene delivery. Proc Natl Acad Sci USA 99:1292–1297PubMedCrossRefGoogle Scholar
  9. Gurtovenko A, Vattulainen I (2005) Pore formation coupled to ion transport through lipid membranes as induced by transmembrane ionic charge imbalance: atomistic molecular dynamics study. J Am Chem Soc 127:17570–17571PubMedCrossRefGoogle Scholar
  10. Gurtovenko A, Anwar J, Vattulainen I (2010) Defect-mediated trafficking across cell membranes: insights from in silico modeling. Chem Rev 110:6077–6103PubMedCrossRefGoogle Scholar
  11. Heller R, Gilbert R, Jaroszeski M (1999) Clinical applications of electrochemotherapy. Adv Drug Deliv Rev 35:119–129PubMedCrossRefGoogle Scholar
  12. Henin J, Shinoda W, Klein ML (2008) United-atom acyl chains for CHARMM phospholipids. J Phys Chem B 112:7008–7015PubMedCrossRefGoogle Scholar
  13. Jorgensen W, Chandrasekhar J, Madura J et al (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935CrossRefGoogle Scholar
  14. Kale L, Skeel R, Bhandarkar M et al (1999) NAMD2: greater scalability for parallel molecular dynamics. J Comput Phys 151:283–312CrossRefGoogle Scholar
  15. Kalinowski S, Figaszewski Z (1995a) A 4-electrode system for measurement of bilayer lipid membrane capacitence. Meas Sci Technol 6:1043–1049CrossRefGoogle Scholar
  16. Kalinowski S, Figaszewski Z (1995b) A 4-electrode potentiostat-galvanostat for studies of bilayer lipid membranes. Meas Sci Technol 6:1050–1055CrossRefGoogle Scholar
  17. Kalinowski S, Ibron G, Bryl K, Figaszewski Z (1998) Chronopotentiometric studies of electroporation of bilayer lipid membranes. Biochim Biophys Acta 1369:204–212PubMedCrossRefGoogle Scholar
  18. Kandasamy SK, Larson RG (2006) Cation and anion transport through hydrophilic pores in lipid bilayers. J Chem Phys 125:074901PubMedCrossRefGoogle Scholar
  19. Koronkiewicz S, Kalinowski S (2004) Influence of cholesterol on electroporation of bilayer lipid membranes: chronopotentiometric studies. Biochim Biophys Acta 1661:196–203PubMedCrossRefGoogle Scholar
  20. Koronkiewicz S, Kalinowski S, Bryl K (2002) Programmable chronopotentiometry as a tool for the study of electroporation and resealing of pores in bilayer lipid membranes. Biochim Biophys Acta 1561:222–229PubMedCrossRefGoogle Scholar
  21. Kotnik T, Bobanovic F, Miklavcic D (1997) Sensitivity of transmembrane voltage induced by applied electric fields—a theoretical analysis. Bioelectrochem Bioenerg 43:285–291CrossRefGoogle Scholar
  22. Kotnik T, Macek-Lebar A, Miklavcic D, Mir L (2000) Evaluation of cell membrane electropermeabilization by means of a nonpermeant cytotoxic agent. Biotechniques 28:921–926PubMedGoogle Scholar
  23. Kotulska M, Koronkiewicz S, Kalinowski S (2004) Self-similar processes and flicker noise from a fluctuating nanopore in a lipid membrane. Phys Rev E 69:031920CrossRefGoogle Scholar
  24. Kotulska M, Kubica K, Koronkiewicz S, Kalinowski S (2007) Modeling the induction of lipid membrane electropermeabilization. Bioelectrochemistry 70:64–70PubMedCrossRefGoogle Scholar
  25. Kotulska M, Basalyga J, Derylo M, Sadowski P (2010) Metastable pores at the onset of constant-current electroporation. J Membr Biol 236:37–41PubMedCrossRefGoogle Scholar
  26. Kramar P, Miklavcic D, Lebar AM (2007) Determination of the lipid bilayer breakdown voltage by means of linear rising signal. Bioelectrochemistry 70:23–27PubMedCrossRefGoogle Scholar
  27. Kramar P, Miklavcic D, Lebar AM (2009) A system for the determination of planar lipid bilayer breakdown voltage and its applications. IEEE Trans Nanobiosci 8:132–138CrossRefGoogle Scholar
  28. Marty M, Sersa G, Garbay JR et al (2006) Electrochemotherapy—an easy, highly effective and safe treatment of cutaneous and subcutaneous metastases: results of ESOPE (European Standard Operating Procedures of Electrochemotherapy) study. EJC Suppl 4:3–13CrossRefGoogle Scholar
  29. Melikov K, Frolov V, Shcherbakov A et al (2001) Voltage-induced nonconductive pre-pores and metastable single pores in unmodified planar lipid bilayer. Biophys J 80:1829–1836PubMedCrossRefGoogle Scholar
  30. Mir LM, Banoun H, Paoletti C (1988) Introduction of definite amounts of nonpermeant molecules into living cells after electropermeabilization—direct access to the cytosol. Exp Cell Res 175:15–25PubMedCrossRefGoogle Scholar
  31. Mir L, Orlowski S, Belehradek J et al (1995) Biomedical applications of electric pulses with special emphasis on antitumor electrochemotherapy. Bioelectrochem Bioenerg 38:203–207CrossRefGoogle Scholar
  32. Montal M, Mueller P (1972) Formation of bimolecular membranes from lipid monolayers and a study of their electrical properties. Proc Natl Acad Sci USA 69:3561–3566PubMedCrossRefGoogle Scholar
  33. Neumann E, Rosenheck K (1972) Permeability changes induced by electric impulses in vesicular membranes. J Membr Biol 10:279–290PubMedCrossRefGoogle Scholar
  34. Phillips J, Braun R, Wang W et al (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26:1781–1802PubMedCrossRefGoogle Scholar
  35. Prausnitz MR, Bose VG, Langer R, Weaver JC (1993) Electroporation of mammalian skin—a mechanism to enhance transdermal drug-delivery. Proc Natl Acad Sci USA 90:10504–10508PubMedCrossRefGoogle Scholar
  36. Pucihar G, Mir L, Miklavcic D (2002) The effect of pulse repetition frequency on the uptake into electropermeabilized cells in vitro with possible applications in electrochemotherapy. Bioelectrochemistry 57:167–172PubMedCrossRefGoogle Scholar
  37. Rols M, Teissie J (1998) Electropermeabilization of mammalian cells to macromolecules: control by pulse duration. Biophys J 75:1415–1423PubMedCrossRefGoogle Scholar
  38. Sersa G, Cemazar M, Miklavcic D (1995) Antitumor effectiveness of electrochemotherapy with cis-diamminedichloroplatinum(II) in mice. Cancer Res 55:3450–3455PubMedGoogle Scholar
  39. Tarek M (2005) Membrane electroporation: a molecular dynamics simulation. Biophys J 88:4045–4053PubMedCrossRefGoogle Scholar
  40. Tarek M, Delemotte L (2010) Electroporation of lipid membranes. In: Pakhomov A, Miklavčič D, Markov M (eds) Advanced electroporation techniques in biology and medicine. Taylor and Francis/CRC Press, Boca Raton, FLGoogle Scholar
  41. Teissie J, Rols M (1993) An experimental evaluation of the critical potential difference inducing cell-membrane electropermeabilization. Biophys J 65:409–413PubMedCrossRefGoogle Scholar
  42. Teissie J, Eynard N, Gabriel B, Rols M (1999) Electropermeabilization of cell membranes. Adv Drug Deliv Rev 35:3–19PubMedCrossRefGoogle Scholar
  43. Teissie J, Escoffre JM, Rols MP, Golzio M (2008) Time dependence of electric field effects on cell membranes. A review for a critical selection of pulse duration for therapeutical applications. Radiol Oncol 42:196–206CrossRefGoogle Scholar
  44. Tieleman D (2004) The molecular basis of electroporation. Biophys J 86:371A–372ACrossRefGoogle Scholar
  45. Tieleman D, Leontiadou H, Mark A, Marrink S (2003) Simulation of pore formation in lipid bilayers by mechanical stress and electric fields. J Am Chem Soc 125:6382–6383PubMedCrossRefGoogle Scholar
  46. Tien HT (1974) Bilayer lipid membranes. Marcel Dekker, New YorkGoogle Scholar
  47. Tuma T, Buermen Á (2009) Circuit simulation with SPICE OPUS: theory and practice. Birkhäuser, BostonCrossRefGoogle Scholar
  48. Villemejane J, Mir LM (2009) Physical methods of nucleic acid transfer: general concepts and applications. Br J Pharmacol 157:207–219PubMedCrossRefGoogle Scholar
  49. Ziegler MJ, Vernier PT (2008) Interface water dynamics and porating electric fields for phospholipid bilayers. J Phys Chem B 112:17003CrossRefGoogle Scholar
  50. Zimmermann U, Pilwat G, Beckers F, Riemann F (1976) Effects of external electrical fields on cell-membranes. Bioelectrochem Bioenerg 3:58–83CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Peter Kramar
    • 1
  • Lucie Delemotte
    • 2
  • Alenka Maček Lebar
    • 1
  • Malgorzata Kotulska
    • 3
  • Mounir Tarek
    • 2
  • Damijan Miklavčič
    • 1
  1. 1.Faculty of Electrical EngineeringUniversity of LjubljanaLjubljanaSlovenia
  2. 2.UMR Structure et Réactivité des Systèmes Moléculaires ComplexesCentre National de la Recherche Scientifique, Université de LorraineNancyFrance
  3. 3.Institute of Biomedical Engineering and InstrumentationWroclaw University of TechnologyWroclawPoland

Personalised recommendations