The Journal of Membrane Biology

, Volume 245, Issue 11, pp 717–730 | Cite as

Ser/Thr Motifs in Transmembrane Proteins: Conservation Patterns and Effects on Local Protein Structure and Dynamics

  • Coral del ValEmail author
  • Stephen H. White
  • Ana-Nicoleta BondarEmail author


We combined systematic bioinformatics analyses and molecular dynamics simulations to assess the conservation patterns of Ser and Thr motifs in membrane proteins, and the effect of such motifs on the structure and dynamics of α-helical transmembrane (TM) segments. We find that Ser/Thr motifs are often present in β-barrel TM proteins. At least one Ser/Thr motif is present in almost half of the sequences of α-helical proteins analyzed here. The extensive bioinformatics analyses and inspection of protein structures led to the identification of molecular transporters with noticeable numbers of Ser/Thr motifs within the TM region. Given the energetic penalty for burying multiple Ser/Thr groups in the membrane hydrophobic core, the observation of transporters with multiple membrane-embedded Ser/Thr is intriguing and raises the question of how the presence of multiple Ser/Thr affects protein local structure and dynamics. Molecular dynamics simulations of four different Ser-containing model TM peptides indicate that backbone hydrogen bonding of membrane-buried Ser/Thr hydroxyl groups can significantly change the local structure and dynamics of the helix. Ser groups located close to the membrane interface can hydrogen bond to solvent water instead of protein backbone, leading to an enhanced local solvation of the peptide.


Bioinformatics Molecular dynamics Molecular transporters and receptors Ser/Thr motifs Transmembrane proteins 



This research was supported in part by Grant GM-74637 from the National Institute of General Medical Sciences (to S.H.W), the Spanish Ministerio de Ciencia e Innovación (project TIN-2009-13950), the Consejería de Innovación, Investigación y Ciencia de la Junta de Andalucía (project TIC-02788) (to C.M.D.V.), the Marie Curie International Reintegration Award IRG276920/Biol-Transp-Comput (to A.-N.B), and an allocation of computer time from the National Science Foundation through the TeraGrid resources.

Supplementary material

232_2012_9452_MOESM1_ESM.pdf (31.5 mb)
Supplementary material 1 (PDF 13217 kb)


  1. Adamian L, Liang J (2002) Interhelical hydrogen bonds and spatial motifs in membrane proteins: polar clamps and serine zippers. Prot Struct Funct Gen 47:209–218CrossRefGoogle Scholar
  2. Aller SG, Yu J, Ward A, Weng Y, Chittaboina S, Zhuo R, Harrel PM, Trinh YT, Zhang Q, Urbatsch IL, Chang G (2009) Structure of P-glycoprotein reveals a molecular basis for poly-specific drug binding. Science 323:1718–1722PubMedCrossRefGoogle Scholar
  3. Ballesteros JA, Deupi X, Olivella M, Haaksma EEJ, Pardo L (2000) Serine and threonine residues bend a-helices in the χ1 = g conformation. Biophys J 79:2754–2760PubMedCrossRefGoogle Scholar
  4. Berman HM, Heinrick K, Nakamura H (2003) Announcing the worldwide Protein Data Bank. Nat Struct Biol 10:980PubMedCrossRefGoogle Scholar
  5. Bezdek JC, Pal NR (1998) Some new indexes of cluster validity. IEEE Trans Syst Man Cybern B Cybern 28:301–315PubMedCrossRefGoogle Scholar
  6. Bondar A-N, del Val C, White SH (2009) Rhomboid protease dynamics and lipid interactions. Structure 17:395–405PubMedCrossRefGoogle Scholar
  7. Bondar A-N, del Val C, Freites JA, Tobias JA, White SH (2010) Dynamics of SecY translocons with translocation-defective mutations. Structure 18:847–857PubMedCrossRefGoogle Scholar
  8. Brillet K, Meksem A, Cobessi D (n.d.) Crystal structure of the heme/hemoglobin outer membrane transporter ShuA from Shigella dysenteriae. Protein Data Bank. doi: 10.2210/pdb3fhh/pdb
  9. Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M (1983) CHARMM: a program for macromolecular energy, minimization, and dynamics. J Comput Chem 4:187–217CrossRefGoogle Scholar
  10. Buss V, Sugihara M, Entel P, Hafner J (2003) Thr94 and wat2b effect protonation on the retinal chromophore in rhodopsin. Angew Chem Int Ed 42:3245–3247CrossRefGoogle Scholar
  11. Chin CN, von Heijne G (2000) Charge pair interactions in a model transmembrane helix in the ER membrane. J Mol Biol 303:1–5PubMedCrossRefGoogle Scholar
  12. Cortes DM, Cuello LG, Perozo E (2001) Molecular architecture of full-length KcsA: role of cytoplasmic domains in ion permeation and activation gating. J Gen Physiol 117:165–180PubMedCrossRefGoogle Scholar
  13. Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N .log(N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092CrossRefGoogle Scholar
  14. Dawson JP, Weinger JS, Engelman DM (2002) Motifs of serine and threonine can drive association of transmembrane helices. J Mol Biol 316:799–805PubMedCrossRefGoogle Scholar
  15. Deupi X, Olivella M, Govaerts C, Ballesteros JA, Campillo M, Pardo L (2004) Ser and Thr residues modulate the conformation of Pro-kinked transmembrane α-helices. Biophys J 86:105–115PubMedCrossRefGoogle Scholar
  16. Doig AJ, Malcolm WM, Stapley BJ, Thornton JM (1997) Structures of N-termini of helices in proteins. Prot Sci 6:147–155CrossRefGoogle Scholar
  17. Dong C, Beis K, Nesper J, Brunkan-LaMontagne AL, Clarke BR, Whitfiled C, Naismith JH (2006) Wza the translocon for E. coli capsular polysaccharides defines a new class of membrane protein. Nature 444:226–229PubMedCrossRefGoogle Scholar
  18. Du Plessis DJF, Berrelkamp G, Nouwen N, Driessen AJM (2009) The lateral gate of SecYEG opens during protein translocation. J Biol Chem 284:15805–15814PubMedCrossRefGoogle Scholar
  19. Eilers M, Shekar SC, Shieh T, Smith SO, Fleming PJ (2000) Internal packing of helical membrane proteins. Proc Natl Acad Sci U S A 97:5796–5801PubMedCrossRefGoogle Scholar
  20. Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) A smooth particle mesh Ewald method. J Chem Phys 103:8577–8593CrossRefGoogle Scholar
  21. Fang Y, Jayaram H, Shane T, Kolmakova-Partensky L, Wu F, Williams C, Xiong Y, Miller C (2009) Structure of a prokaryotic virtual proton pump at 3.2 Å resolution. Nature 460:1040–1043PubMedGoogle Scholar
  22. Feller SE, MacKerell AD Jr (2000) An improved empirical potential energy function for molecular simulations of phospholipids. J Phys Chem B 104:7510–7515CrossRefGoogle Scholar
  23. Feller SE, Zhang Y, Pastor RW, Brooks BR (1995) Constant pressure molecular dynamics simulation: the Langevin piston method. J Chem Phys 103:4613–4621CrossRefGoogle Scholar
  24. Gratkowski H, Lear JD, DeGrado WF (2001) Polar side chains drive the association of model transmembrane peptides. Proc Natl Acad Sci U S A 98:880–885PubMedCrossRefGoogle Scholar
  25. Gray TM, Matthews BW (1984) Intrahelical hydrogen bonding of serine, threonine and cysteine residues within α-helices and its relevance to membrane-bound proteins. J Mol Biol 175:75–81PubMedCrossRefGoogle Scholar
  26. Grubmüller H, Heller H, Windemuth A, Schulten K (1991) Generalized Verlet algorithm for efficient molecular dynamics simulations with long-range interactions. Mol Simul 6:121–142CrossRefGoogle Scholar
  27. Gulbis JM, Kuo A, Smith B, Doyle DA, Edwards A, Arrowsmith C, Sundstrom M (n.d.) Intermediate gating structure 1 of the inwardly rectifying K+ channel KirBac3.1. Protein Data Bank. doi: 10.2210/pdb1xl4/pdb
  28. Han S-J, Hamdan FF, Kim S-K, Jacobson KA, Brichta L, Bloodworth LM, Li JH, Wess J (2005) Pronounced conformational changes following agonist activation of the M3 muscarinic acethylcholine receptor. J Biol Chem 280:24870–24879PubMedCrossRefGoogle Scholar
  29. Hermansson M, von Heijne G (2003) Inter-helical hydrogen bond formation during membrane protein integration into the ER membrane. J Mol Biol 334:803–809PubMedCrossRefGoogle Scholar
  30. Hessa T, Kim H, Bihlmaier K, Lundin C, Boekel J, Andersson H, Nilsson I, White SH, von Heijne G (2005) Recognition of transmembrane helices by the endoplasmic reticulum translocon. Nature 433:377–381PubMedCrossRefGoogle Scholar
  31. Hu J, Xue Y, Lee S, Ha Y (2011) The crystal structure of GxxGD membrane protease FlaK. Nature 475:528–531PubMedCrossRefGoogle Scholar
  32. Hub JS, Winkler FK, Merrick M, de Groot BL (2010) Potentials of mean force and permeabilities for carbon dioxide, ammonia, and water flux across the Rhesus protein channel and lipid membranes. J Am Chem Soc 132:13251–13263PubMedCrossRefGoogle Scholar
  33. Humphrey W, Dalke W, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38PubMedCrossRefGoogle Scholar
  34. Jain AK, Murty MN, Flynn PJ (1999) Data clustering: a review. ACM Comput Surv 31:264–323CrossRefGoogle Scholar
  35. Jardon-Valadez E, Bondar A-N, Tobias DJ (2010) Coupling of retinal, protein, and water dynamics in squid rhodopsin. Biophys J 99:2200–2207PubMedCrossRefGoogle Scholar
  36. Johansson ACV, Lindahl E (2006) Amino-acid solvation structure in transmembrane helices from molecular dynamics simulations. Biophys J 91:4450–4463PubMedCrossRefGoogle Scholar
  37. Jones B (1993) MATLAB statistics toolbox: computation, visualization, programming: user’s guide. MathWorks, NatickGoogle Scholar
  38. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935CrossRefGoogle Scholar
  39. Junne T, Schwede T, Goder V, Spiess M (2007) Mutations in the Sec61p channel affecting signal sequence recognition and membrane protein topology. J Biol Chem 282:33201–33209Google Scholar
  40. Kalé L, Skeel R, Bhandarkar M, Brunner R, Gursoy A, Krawetz N, Phillips J, Shinozaki A, Varadarajan K, Schulten K (1999) NAMD2: greater scalability for parallel molecular dynamics. J Comput Phys 151:283–312CrossRefGoogle Scholar
  41. Kawate T, Michel JC, Birdsong WT, Gouaux E (2009) Crystal structure of the ATP-gated P2X4 ion channel in the closed state. Nature 460:592–598PubMedCrossRefGoogle Scholar
  42. Krieg S, Huché F, Diederichs K, Izadi-Pruneyre N, Lecroisey A, Wandersman C, Delepelaire P, Welte W (2009) Heme uptake across the outer membrane as revealed by crystal structures of the receptor-hemophore complex. Proc Natl Acad Sci U S A 106:1045–1050PubMedCrossRefGoogle Scholar
  43. Krishnakumar SS, London E (2007) The control of transmembrane helix transverse position in membranes by hydrophilic residues. J Mol Biol 374:1251–1269PubMedCrossRefGoogle Scholar
  44. Kühlbrandt W, Zeelen J, Dietrich J (2002) Structure, mechanism, and regulation of the Neurosphora plasma membrane H+-ATPase. Science 297:1692–1696PubMedCrossRefGoogle Scholar
  45. Kumar S, Bansal M (1998) Dissecting α-helices: position-specific analysis of α-helices in globular proteins. Prot Struct Funct Gen 31:460–476CrossRefGoogle Scholar
  46. Landolt-Marticorena C, Williams KA, Deber CM, Reithmeier RAF (1993) Non-random distribution of amino acids in the transmembrane segments of human type I single span membrane proteins. J Mol Biol 229:602–608PubMedCrossRefGoogle Scholar
  47. Lear JD, Wasserman ZR, DeGrado WF (1998) Synthetic peptide models for protein ion channels. Science 240:1177–1181CrossRefGoogle Scholar
  48. Li B, Nowak NM, Kim SK, Jacobson KA, Bagheri A, Schmidt C, Wess J (2005) Random mutagenesis of the M3 muscarinic acetylcholine receptor. J Biol Chem 280:5664–5675PubMedCrossRefGoogle Scholar
  49. Lupo D, Li X-D, Durand A, Tomizaki T, Cherif-Zahar B, Matassi G, Merrik M, Winkler FK (2007) The 1.3 Å resolution structure of Nitrosomonas europaea Rh50 and mechanistic implications for NH3 transport by Rhesus family proteins. Proc Natl Acad Sci U S A 104:19303–19308PubMedCrossRefGoogle Scholar
  50. MacCallum JL, Benett WFD, Tieleman DP (2008) Distribution of amino acids in a lipid bilayer from computer simulations. Biophys J 94:3393–3404PubMedCrossRefGoogle Scholar
  51. MacKerell AD Jr, Bashford D, Bellott M, Dunbrack RL Jr, Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S et al (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102:3586–3616CrossRefGoogle Scholar
  52. MacQueen JB (1967) Some methods for classification and analysis of multivariate observations, vol 1. University of California Press, BerkeleyGoogle Scholar
  53. Mann HB, Whitney DR (1947) On a test of whether one of two random variables is stochastically larger than the other. Ann Math Stat 18:50–60CrossRefGoogle Scholar
  54. Martyna GJ, Tobias DJ, Klein ML (1994) Constant-pressure molecular dynamics algorithms. J Chem Phys 101:4177–4189Google Scholar
  55. Metz G, Siebert F, Engelhard M (1991) Asp85 is the only internal aspartic acid that gets protonated in the M intermediate and the purple-to-blue transition in bacteriorhodopsin. FEBS Lett 303:237–241CrossRefGoogle Scholar
  56. Miranda M, Pardo JP, Petrov VV (2011) Structure–function relationships in membrane segment 6 of the yeast plasma membrane Pma1 H+-ATPase. Biochim Biophys Acta 1808:1781–1789PubMedCrossRefGoogle Scholar
  57. Mitchell TM (1997) Machine learning. McGraw-Hill Higher Education, New YorkGoogle Scholar
  58. Moon CP, Fleming KG (2011) Side-chain hydrophobicity scale derived from transmembrane protein folding into lipid bilayers. Proc Natl Acad Sci U S A 108:10174–10177PubMedCrossRefGoogle Scholar
  59. Murakami M, Kouyama T (2008) Crystal structure of squid rhodopsin. Nature 453:363–367PubMedCrossRefGoogle Scholar
  60. Munter L-M, Voigt P, Harmeier A, Kaden D, Gottschalk KE, Weise C, Pipkorn R, Schaefer M, Langosch D, Multhaup G (2007) GxxxG motifs within the amyloid precursor transmembrane sequence are critical for the etiology of Aβ42. EMBO J 26:1702–1712Google Scholar
  61. Nack M, Radu I, Schultz B-J, Resler T, Schlesinger R, Bondar A-N, del Val C, Abbruzzetti S, Viappiani C, Bamann C, Bamberg E, Heberle J (2012) Kinetics of proton release and uptake by channelrhodopsin-2. FEBS Lett 586:1344–1348Google Scholar
  62. Obara K, Miyashita N, Xu C, Toyoshima I, Sugita Y, Inesi G, Toyoshima C (2005) Structural role of countertransport revealed in Ca2+ pump crystal structure in the absence of Ca2+. Proc Natl Acad Sci U S A 102:14489–14496PubMedCrossRefGoogle Scholar
  63. Okada T, Sugihara M, Bondar A-N, Elstner M, Entel P, Buss V (2004) The retinal conformation and its environment in rhodopsin in light of a new 2.2 Å crystal structure. J Mol Biol 342:571PubMedCrossRefGoogle Scholar
  64. Osborne RS, Silhawy TJ (1993) PrlA suppressor mutations cluster in regions corresponding to three distinct topological domains. EMBO J 12:3391–3398PubMedGoogle Scholar
  65. Pedersen BP, Buch-Pedersen MJ, Morth JP, Palmgren MG, Nissen P (2007) Crystal structure of the plasma membrane proton pump. Nature 450:1111–1114PubMedCrossRefGoogle Scholar
  66. Perálvarez A, Barnadas R, Sabés M, Querol E, Padrós E (2001) Thr90 is a key residue of the bacteriorhodopsin proton pumping mechanism. FEBS Lett 508:399–402PubMedCrossRefGoogle Scholar
  67. Phillips JC, Braun B, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kale L, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26:1781–1802PubMedCrossRefGoogle Scholar
  68. Pilpel Y, Ben-Tal N, Lancet D (1999) kPROT: a knowledge-based scale for the propensity of residue orientation in transmembrane segments. Application to membrane protein structure prediction. J Mol Biol 294:921–935PubMedCrossRefGoogle Scholar
  69. Plath K, Mothes W, Wilkinson BM, Stirling CJ, Rapoport TA (1998) Signal sequence recognition in posttranslational protein transport across the yeast ER membrane. Cell 94:795–807PubMedCrossRefGoogle Scholar
  70. Presta LG, Rose GD (1988) Helix signals in proteins. Science 240:1632–1641PubMedCrossRefGoogle Scholar
  71. Rice P, Longden I, Bleasby A (2000) EMBOSS: the European molecular biology open software suite. Trends Genet 16:276–277PubMedCrossRefGoogle Scholar
  72. Richardson JS, Richardson DC (1988) Amino acid preferences for specific location at the ends of helices. Science 240:1648–1652PubMedCrossRefGoogle Scholar
  73. Rousseeuw P (1987) Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J Comput Appl Math 20:53–65CrossRefGoogle Scholar
  74. Royston P, Remark AS (1995) R94: a remark on algorithm AS 181: the W test for normality. Appl Stat 44:547–551CrossRefGoogle Scholar
  75. Ryckaert J-P, Ciccotti G, Berendsen HJC (1977) Numerical integration of the Cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23:327–341CrossRefGoogle Scholar
  76. Sako T (1991) Novel prlA alleles defective in supporting staphylokinase processing in Escherichia coli. J Bacteriol 173:2289–2296PubMedGoogle Scholar
  77. Shapiro SS, Wilk MB (1965) An analysis of variance test for normality (complete samples). Biometrika 52:591–611Google Scholar
  78. Smith MA, Clemmons WM Jr, DeMars CJ, Flower AN (2005) Modelling the effects of prl mutations on the Escherichia coli SecY complex. J Bacteriol 187:6454–6465PubMedCrossRefGoogle Scholar
  79. Sobolevsky AI, Rosconi MP, Gouaux E (2009) X-ray structure, symmetry and mechanism of an AMPA-subtype glutamate receptor. Nature 462:745–756PubMedCrossRefGoogle Scholar
  80. Stenkamp RE (2008) Alternative models for two crystal structures of bovine rhodopsin. Acta Crystallogr D64:902–904Google Scholar
  81. Subbarao GV, van der Berg B (2006) Crystal structure of the monomeric porin OmpG. J Mol Biol 360:750–759PubMedCrossRefGoogle Scholar
  82. Sugihara M, Fujibuchi W, Suwa M (2011) Structural elements of the signal propagation pathway in squid rhodopsin and bovine rhodopsin. J Phys Chem B 115:6172–6179PubMedCrossRefGoogle Scholar
  83. Sui H, Han B-G, Lee JK, Wallan P, Jap BK (2001) Structural basis of water-specific transport through the AQP1 water channel. Nature 414:872–878PubMedCrossRefGoogle Scholar
  84. R Develompment Core Team (2010) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
  85. Tuckerman M, Berne BJ (1992) Reversible multiple time scale molecular dynamics. J Chem Phys 97:1990–2001CrossRefGoogle Scholar
  86. Tusnády GE, Dosztányi ZS, Simon I (2005a) PDB_TM: selection and membrane localization of transmembrane proteins in the protein data bank. Nucleic Acids Res 33:D275–D278PubMedCrossRefGoogle Scholar
  87. Tusnády GE, Dosztányi ZS, Simon I (2005b) TMDET: web server for detecting transmembrane domains by using 3D structure of proteins. Bioinformatics 21:1276–1277PubMedCrossRefGoogle Scholar
  88. Unwin N (2005) Refined structure of the nicotinic acethylcholine receptor at 4Å resolution. J Mol Biol 346:967–989PubMedCrossRefGoogle Scholar
  89. van den Berg B, Clemons WM Jr, Collinson I, Modis Y, Hartmann E, Harrison SC, Rapoport T (2004) X-ray structure of a protein conducting channel. Nature 427:36–44PubMedCrossRefGoogle Scholar
  90. van Kim CL, Colin Y, Cartron J-P (2006) Rh proteins: key structural and functional components of the red cell membrane. Blood Rev 20:93–110PubMedCrossRefGoogle Scholar
  91. Vijayakumar M, Qian H, Zhou H-X (1999) Hydrogen bonds between short polar side chains and peptide backbone: prevalence in proteins and effects on helix-forming pepensities. Prot Struct Funct Gen 34:497–507CrossRefGoogle Scholar
  92. Worth CL, Blundell TL (2008) Satisfaction of hydrogen-bonding potential influences the conservation of polar sidechains. Proteins 75:413–429CrossRefGoogle Scholar
  93. Xie K, Hessa T, Seppälä S, Rapp M, von Heijne G, Dalbey RE (2007) Features of transmembrane segments that promote the lateral release from the translocase into the lipid phase. Biochem 46:15153–15161CrossRefGoogle Scholar
  94. Zhou FX, Cocco MJ, Russ WP, Brunger AT, Engelman DM (2000) Interhelical hydrogen bonding drives strong interactions in membrane proteins. Nat Struct Biol 7:154–160PubMedCrossRefGoogle Scholar
  95. Zhou FX, Merianos HJ, Brunger AT, Engelman DM (2001) Polar residues drive association of polyleucine transmembrane helices. Proc Natl Acad Sci U S A 98:2250–2255PubMedCrossRefGoogle Scholar
  96. Zimmer J, Nam Y, Rapoport TA (2008) Structure of a complex of the ATPase SecA and the protein-translocation channel. Nature 455:936–943PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Computer Science and Artificial IntelligenceUniversity of GranadaGranadaSpain
  2. 2.CITIC-UGRCentro de Investigación en Tecnologías de la Información y de las Comunicaciones de la Universidad de GranadaGranadaSpain
  3. 3.Department of Physiology and BiophysicsUniversity of California, IrvineIrvineUSA
  4. 4.Theoretical Molecular Biophysics, Department of PhysicsFreie Universität BerlinBerlin-DahlemGermany

Personalised recommendations