The Journal of Membrane Biology

, Volume 245, Issue 9, pp 531–543

Molecular Dynamics Simulations of Lipid Membrane Electroporation

Article

Abstract

The permeability of cell membranes can be transiently increased following the application of external electric fields. Theoretical approaches such as molecular modeling provide a significant insight into the processes affecting, at the molecular level, the integrity of lipid cell membranes when these are subject to voltage gradients under similar conditions as those used in experiments. This article reports on the progress made so far using such simulations to model membrane—lipid bilayer—electroporation. We first describe the methods devised to perform in silico experiments of membranes subject to nanosecond, megavolt-per-meter pulsed electric fields and of membranes subject to charge imbalance, mimicking therefore the application of low-voltage, long-duration pulses. We show then that, at the molecular level, the two types of pulses produce similar effects: provided the TM voltage these pulses create are higher than a certain threshold, hydrophilic pores stabilized by the membrane lipid headgroups form within the nanosecond time scale across the lipid core. Similarly, when the pulses are switched off, the pores collapse (close) within similar time scales. It is shown that for similar TM voltages applied, both methods induce similar electric field distributions within the membrane core. The cascade of events following the application of the pulses, and taking place at the membrane, is a direct consequence of such an electric field distribution.

Keywords

Millisecond pulse Nanopulse Electric field Nanopore 

References

  1. Abidor IG, Arakelyan VB, Chernomordink LV, Chizmadzhev YA, Pastushenko VF, Tarasevich MR (1979) Electrical breakdown of BLM: main experimental facts and their qualitative discussion. Bioelectrochem Bioenerg 6:37–52CrossRefGoogle Scholar
  2. Aksimentiev A, Schulten K (2005) Imaging α-hemolysin with molecular dynamics: ionic conductance, osmotic permeability, and the electrostatic potential map. Biophys J 88:3745–3761PubMedCrossRefGoogle Scholar
  3. Allen MP, Tildesley DJ (1987) Computer simulation of liquids. Clarendon Press, OxfordGoogle Scholar
  4. Anézo C, Vries AHd, Höltje HD, Tieleman DP, Marrink SJ (2003) Methodological issues in lipid bilayer simulations. J Phys Chem B 107:9424–9433CrossRefGoogle Scholar
  5. Beebe SJ, Schoenbach KH (2005) Nanosecond pulsed electric fields: a new stimulus to activate intracellular signaling. J Biomed Biotechnol 4:297–300CrossRefGoogle Scholar
  6. Benz R, Beckers F, Zimmerman U (1979) Reversible electrical breakdown of lipid bilayer membranes—a charge-pulse relaxation study. J Membr Biol 48:181–204PubMedCrossRefGoogle Scholar
  7. Berkowitz ML, Raghavan MJ (1991) Computer simulation of a water/membrane interface. Langmuir 7:1042–1044CrossRefGoogle Scholar
  8. Berkowitz ML, Bostick DL, Pandit S (2006) Aqueous solutions next to phospholipid membrane surfaces: insights from simulations. Chem Rev 106(4):1527–1539PubMedCrossRefGoogle Scholar
  9. Bhandarkar M, Brunner R, Chipot C, Dalke A, Dixit S, Grayson P, Gullinsrud J, Gursoy A, Humphrey W, Hurwitz D, Krawetz N, Nelson M, Phillips J, Shinozaki A, Zheng G, Zhu F (2002) NAMD version 2.4. http://wwwksuiucedu/Research/namd
  10. Bockmann RA, de Groot BL, Kakorin S, Neumann E, Grubmuller H (2008) Kinetics, statistics, and energetics of lipid membrane electroporation studied by molecular dynamics simulations. Biophys J 95:1837–1850PubMedCrossRefGoogle Scholar
  11. Bostick D, Berkowitz ML (2003) The implementation of slab geometry for membrane-channel molecular dynamics simulations. Biophys J 85:97–107PubMedCrossRefGoogle Scholar
  12. Cascales JJL, Berendsen HJC, de la Torre JG (1996) Molecular dynamics simulation of water between two charged layers of dipalmitoylphosphatidylserine. J Phys Chem 100:8621–8627CrossRefGoogle Scholar
  13. Chang DC (1992) Structure and dynamics of electric field-induced membrane pores as revealed by rapid-freezing electron microscopy. In: Guide to electroporation and electrofusion. Academic Press, Orlando, pp 9–27Google Scholar
  14. Chen C, Smye SW, Robinson MP, Evans JA (2006) Membrane electroporation theories: a review. Med Biol Eng Comput 44:5–14PubMedCrossRefGoogle Scholar
  15. Chimerel C, Movileanu L, Pezeshki S, Winterhalter M, Kleinekathofer U (2008) Transport at the nanoscale: temperature dependence of ion conductance. Eur Biophys J 38:121–125PubMedCrossRefGoogle Scholar
  16. Chipot C, Klein ML, Tarek M (2005) Modeling lipid membranes. In: Yip S (ed) Handbook of materials modeling. Springer, Dordrecht, pp 929–958Google Scholar
  17. Chiu SW, Clark M, Jakobsson E, Subramaniam S, Scott HL (1999) Optimization of hydrocarbon chain interaction parameters: application to the simulation of fluid phase lipid bilayers. J Phys Chem B 103:6323–6327CrossRefGoogle Scholar
  18. Chiu SW, Vasudevan S, Jakobsson E, Mashl RJ, Scott HL (2003) Structure of sphingomyelin bilayers: a simulation study. Biophys J 85:3624–3635PubMedCrossRefGoogle Scholar
  19. Crozier PS, Henderson D, Rowley RL, Busath DD (2001) Model channel ion currents in NaCl extended simple point charge water solution with applied-field molecular dynamics. Biophys J 81:3077–3089PubMedCrossRefGoogle Scholar
  20. Dahlberg M, Maliniak A (2008) Molecular dynamics simulations of cardiolipin bilayers. J Phys Chem B 112:11655–11663PubMedCrossRefGoogle Scholar
  21. Damodaran KV, Merz KM (1994) A comparison of DMPC and DLPE-based lipid bilayers. Biophys J 66:1076–1087PubMedCrossRefGoogle Scholar
  22. Darden T, York D, Pedersen L (1993) Particle mesh ewald—an N log(N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092CrossRefGoogle Scholar
  23. Delemotte L, Dehez F, Treptow W, Tarek M (2008) Modeling membranes under a transmembrane potential. J Phys Chem B 112:5547–5550PubMedCrossRefGoogle Scholar
  24. Delemotte L, Treptow W, Klein ML, Tarek M (2010) Effect of sensor domain mutations on the properties of voltage-gated ion channels: molecular dynamics studies of the potassium channel Kv1.2. Biophys J 99(9):L72–L74PubMedCrossRefGoogle Scholar
  25. Delemotte L, Tarek M, Klein ML, Amaral C, Treptow W (2011) Intermediate states of the Kv1.2 voltage sensor from atomistic molecular dynamics simulations. Proc Natl Acad Sci USA 108(15):6109–6114PubMedCrossRefGoogle Scholar
  26. Deng J, Schoenbach KH, Buescher ES, Hair PS, Fox PM, Beebe SJ (2003) The effects of intense submicrosecond electrical pulses on cells. Biophys J 84:2709–2714PubMedCrossRefGoogle Scholar
  27. Eberhard N, Sowers AE, Jordan CA (1989) Electroporation and electrofusion in cell biology. Plenum Press, New YorkGoogle Scholar
  28. Edholm O (2008) Time and length scales in lipid bilayer simulations. In: Feller SE (ed) Computational modeling of membrane bilayers, vol 60. Current topics in membranes. Elsevier, London, pp 91–110CrossRefGoogle Scholar
  29. Essmann U, Perera L, Berkowitz ML, Darden T, Pedersen LG (1995) A smooth particle mesh Ewald method. J Chem Phys 103:8577–8593CrossRefGoogle Scholar
  30. Feller SE (2000) Molecular dynamics simulations of lipid bilayers. Curr Opin Colloid Interface Sci 5:217–223CrossRefGoogle Scholar
  31. Feller SE (2008) Computational modeling of membrane bilayers, vol 60. current topics in membranes. Elsevier, LondonGoogle Scholar
  32. Feller SE, Gawrisch K, MacKerell AD (2002) Polyunsaturated fatty acids in lipid bilayers: intrinsic and environmental contributions to their unique physical properties. J Am Chem Soc 124:318–326PubMedCrossRefGoogle Scholar
  33. Forrest LR, Sansom MSP (2000) Membrane simulations: bigger and better. Curr Opin Struct Biol 10:174–181PubMedCrossRefGoogle Scholar
  34. Gawrisch K, Ruston D, Zimmerberg J, Parsegian V, Rand R, Fuller N (1992) Membrane dipole potentials, hydration forces, and the ordering of water at membrane surfaces. Biophys J 61:1213–1223PubMedCrossRefGoogle Scholar
  35. Gennis RB (1989) Biomembranes: molecular structure and function. Springer, HeidelbergGoogle Scholar
  36. Gillilan RE, Wood F (1995) Visualization, virtual reality, and animation within the data flow model of computing. Comput Graph 29:55–58CrossRefGoogle Scholar
  37. Golzio M, Teissie J, Rols M-P (2002) Direct visualization at the single-cell level of electrically mediated gene delivery. Proc Natl Acad Sci USA 99:1292–1297PubMedCrossRefGoogle Scholar
  38. Gurtovenko AA, Vattulainen I (2005) Pore formation coupled to ion transport through lipid membranes as induced by transmembrane ionic charge imbalance: atomistic molecular dynamics study. J Am Chem Soc 127:17570–17571PubMedCrossRefGoogle Scholar
  39. Gurtovenko AA, Vattulainen I (2008) Effect of NaCl and KCl on phosphatidylcholine and phosphatidylethanolamine lipid membranes: insight from atomic-scale simulations for understanding salt-induced effects in the plasma membrane. J Phys Chem B 112:1953–1962PubMedCrossRefGoogle Scholar
  40. Gurtovenko AA, Jamshed Anwar J, Vattulainen I (2010) Defect-mediated trafficking across cell membranes: insights from in silico modeling. Chem Rev 110:6077–6103PubMedCrossRefGoogle Scholar
  41. Hu Q, Viswanadham S, Joshi RP, Schoenbach KH, Beebe SJ, Blackmore PF (2005) Simulations of transient membrane behavior in cells subjected to a high-intensity ultrashort electric pulse. Phys Rev E 71:031914CrossRefGoogle Scholar
  42. Humphrey W, Dalke A, Schulten K (1996) VMD—visual molecular dynamics. J Mol Graph 14:33–38PubMedCrossRefGoogle Scholar
  43. Kalé L, Skeel R, Bhandarkar M, Brunner R, Gursoy A, Krawetz N, Phillips J, Shinozaki A, Varadarajan K, Schulten K (1999) Namd2: greater scalability for parallel molecular dynamics. J Comp Phys 151:283–312CrossRefGoogle Scholar
  44. Kandasamy SK, Larson RG (2006) Cation and anion transport through hydrophilic pores in lipid bilayers. J Chem Phys 125:074901PubMedCrossRefGoogle Scholar
  45. Khalili-Araghi F, Tajkhorshid E, Schulten K (2006) Dynamics of K+ ion conduction through Kv1.2. Biophys J 91:L72–L74PubMedCrossRefGoogle Scholar
  46. Kotnik T, Miklavcic D (2006) Theoretical evaluation of voltage inducement on internal membranes of biological cells exposed to electric fields. Biophys J 90(2):480–491PubMedCrossRefGoogle Scholar
  47. Kotnik T, Miklavcic D, Slivnik T (1998) Time course of transmembrane voltage induced by time-varying electric fields—a method for theoretical analysis and its application. Bioelectrochem Bioenerg 45(1):3–16CrossRefGoogle Scholar
  48. Kutzner C, Grubmüller H, de Groot BL, Zachariae U (2011) Computational electrophysiology: the molecular dynamics of ion channel permeation and selectivity in atomistic detail. Biophys J 101:809–817PubMedCrossRefGoogle Scholar
  49. Leach AR (2001) Molecular modelling: principles and applications, 2nd edn. Prentice Hall, Englewood CliffsGoogle Scholar
  50. Lewis TJ (2003) A model for bilayer membrane electroporation based on resultant electromechanical stress. IEEE Trans Dielectr Electr Insul 10:769–777CrossRefGoogle Scholar
  51. Li S (2008) Electroporation protocols: preclinical and clinical gene medicine, vol 423. Methods in molecular biology. Humana Press, TotowaGoogle Scholar
  52. Li Z, Venable RM, Rogers LA, Murray D, Pastor RW (2009) Molecular dynamics simulations of PIP2 and PIP3 in lipid bilayers: determination of ring orientation, and the effects of surface roughness on a Poisson-Boltzmann description. Biophys J 97:155–163PubMedCrossRefGoogle Scholar
  53. Liberman YA, Topaly VP (1969) Permeability of biomolecular phospholipid membranes for fat-soluble ions. Biophysics USSR 14:477Google Scholar
  54. Lindahl E, Edholm O (2000) Mesoscopic undulations and thickness fluctuations in lipid bilayers from molecular dynamics simulations. Biophys J 79:426–433PubMedCrossRefGoogle Scholar
  55. Lindahl E, Sansom MSP (2008) Membrane proteins: molecular dynamics simulations. Curr Opin Struct Biol 18:425–431PubMedCrossRefGoogle Scholar
  56. MacKerell AD Jr, Bashford D, Bellott M, Dunbrack RL Jr, Evanseck J, Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph-McCarthy D, Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S, Ngo T, Nguyen DT, Prodhom B, Reiher WE III, Roux B, Schlenkrich M, Smith JC, Stote R, Straub J, Watanabe M, Wiorkiewicz-Kuczera J, Yin D, Karplus M (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102:3586–3616CrossRefGoogle Scholar
  57. Marrink SJ, Mark AE (2001) Effect of undulations on surface tension in simulated bilayers. J Phys Chem B 105:6122–6127CrossRefGoogle Scholar
  58. Marrink SJ, Jähniga F, Berendsen HJ (1996) Proton transport across transient single-file water pores in a lipid membrane studied by molecular dynamics simulations. Biophys J 71:632–647PubMedCrossRefGoogle Scholar
  59. Marrink SJ, de Vries AH, Tieleman DP (2009) Lipids on the move: simulations of membrane pores, domains, stalks and curves. Biochim Biophys Acta Biomembr 1788:149–168CrossRefGoogle Scholar
  60. Mashl RJ, Scott HL, Subramaniam S, Jakobsson E (2001) Molecular simulation of dioleylphosphatidylcholine bilayers at differing levels of hydration. Biophys J 81:3005–3015PubMedCrossRefGoogle Scholar
  61. Mukhopadhyay P, Monticelli L, Tieleman DP (2004) Molecular dynamics simulation of a palmitoyl-oleoyl phosphatidylserine bilayer with Na+ counterions and NaCl. Biophys J 86:1601–1609PubMedCrossRefGoogle Scholar
  62. Nickoloff JA (1995) Animal cell electroporation and electrofusion protocols, vol 48. Methods in molecular biology. Humana Press, TotowaCrossRefGoogle Scholar
  63. Paganin-Gioannia A, Bellarda E, Escoffrea JM, Rols MP, Teissié J, Golzio M (2011) Direct visualization at the single-cell level of siRNA electrotransfer into cancer cells. Proc Natl Acad Sci USA 108:10443–10447CrossRefGoogle Scholar
  64. Pandit SA, Bostick D, Berkowitz ML (2003) Mixed bilayer containing dipalmitoylphosphatidylcholine and dipalmitoylphosphatidylserine: lipid complexation, ion binding, and electrostatics. Biophys J 85:3120–3131PubMedCrossRefGoogle Scholar
  65. Patel RY, Balaji PV (2008) Characterization of symmetric and asymmetric lipid bilayers composed of varying concentrations of ganglioside GM1 and DPPC. J Phys Chem B 112:3346–3356PubMedCrossRefGoogle Scholar
  66. Pauly H, Schwan HP (1959) Uber die Impedanz Einer Suspension von Kugelformigen Teilchen mit Einer Schale—Ein Modell fur das Dielektrische Verhalten von Zellsuspensionen und von Proteinlosungen. Z Naturforsch B 14(2):125–131Google Scholar
  67. Pucihar G, Kotnik T, Valic B, Miklavcic D (2006) Numerical determination of transmembrane voltage induced on irregularly shaped cells. Ann Biomed Eng 34:642–652PubMedCrossRefGoogle Scholar
  68. Pucihar G, Kotnik T, Miklavcic D, Teissié J (2008) Kinetics of transmembrane transport of small molecules into electropermeabilized cells. Biophys J 95:2837–2848PubMedCrossRefGoogle Scholar
  69. Rog T, Martinez-Seara H, Munck N, Oresic M, Karttunen M, Vattulainen I (2009) Role of cardiolipins in the inner mitochondrial membrane: insight gained through atom-scale simulations. J Phys Chem B 113:3413–3422PubMedCrossRefGoogle Scholar
  70. Rög T, Murzyn K, Pasenkiewicz-Gierula M (2002) The dynamics of water at the phospholipid bilayer: a molecular dynamics study. Chem Phys Lett 352:323–327CrossRefGoogle Scholar
  71. Roux B (1997) Influence of the membrane potential on the free energy of an intrinsic protein. Biophys J 73:2980–2989PubMedCrossRefGoogle Scholar
  72. Roux B (2008) The membrane potential and its representation by a constant electric field in computer simulations. Biophys J 95:4205–4216PubMedCrossRefGoogle Scholar
  73. Sachs JN, Crozier PS, Woolf TB (2004) Atomistic simulations of biologically realistic transmembrane potential gradients. J Chem Phys 121:10847–10851PubMedCrossRefGoogle Scholar
  74. Saiz L, Klein ML (2001) Structural properties of a highly polyunsaturated lipid bilayer from molecular dynamics simulations. Biophys J 81:204–216PubMedCrossRefGoogle Scholar
  75. Saiz L, Klein ML (2002a) Computer simulation studies of model biological membranes. Acc Chem Res 35:482–489PubMedCrossRefGoogle Scholar
  76. Saiz L, Klein ML (2002b) Electrostatic interactions in a neutral model phospholipid bilayer by molecular dynamics simulations. J Chem Phys 116:3052–3057CrossRefGoogle Scholar
  77. Sotomayor M, Vasquez V, Perozo E, Schulten K (2007) Ion conduction through MscS as determined by electrophysiology and simulation. Biophys J 92:886–902PubMedCrossRefGoogle Scholar
  78. Sundararajan R (2009) Nanosecond electroporation: another look. Mol Biotechnol 41:69–82PubMedCrossRefGoogle Scholar
  79. Tarek M (2005) Membrane electroporation: a molecular dynamics simulation. Biophys J 88:4045–4053PubMedCrossRefGoogle Scholar
  80. Tieleman DP (2004) The molecular basis of electroporation. BMC Biochem 5:10PubMedCrossRefGoogle Scholar
  81. Tieleman DP, Marrink SJ, Berendsen HJC (1997) A computer perspective of membranes: molecular dynamics studies of lipid bilayer systems. Biochim Biophys Acta 1331:235–270PubMedCrossRefGoogle Scholar
  82. Tieleman DP, Berendsen JHC, Sansom MSP (2001) Voltage-dependent insertion of alamethicin at phospholipid/water and octane water interfaces. Biophys J 80:331–346PubMedCrossRefGoogle Scholar
  83. Tobias DJ (2001) Membrane simulations. In: Becker OH, Roux B, Watanabe M (eds) Computational biochemistry and biophysics. Marcel Dekker, New YorkGoogle Scholar
  84. Tobias DJ, Tu K, Klein ML (1997) Atomic-scale molecular dynamics simulations of lipid membranes. Curr Opin Colloid Interface Sci 2:15–26CrossRefGoogle Scholar
  85. Treptow W, Maigret B, Chipot C, Tarek M (2004) Coupled motions between pore and voltage-sensor domains: a model for Shaker B, a voltage-gated potassium channel. Biophys J 87:2365–2379PubMedCrossRefGoogle Scholar
  86. Treptow W, Tarek M, Klein ML (2009) Initial response of the potassium channel voltage sensor to a transmembrane potential. J Am Chem Soc 131:2107–2110PubMedCrossRefGoogle Scholar
  87. Vacha R, Berkowitz ML, Jungwirth P (2009) Molecular model of a cell plasma membrane with an asymmetric multicomponent composition: water permeation and ion effects. Biophys J 96:4493–4501PubMedCrossRefGoogle Scholar
  88. Vasilkoski Z, Esser AT, Gowrishankar TR, Weaver JC (2006) Membrane electroporation: the absolute rate equation and nanosecond time scale pore creation. Phys Rev E 74:021904CrossRefGoogle Scholar
  89. Vernier PT, Ziegler MJ (2007) Nanosecond field alignment of head group and water dipoles in electroporating phospholipid bilayers. J Phys Chem B 111:12993–12996PubMedCrossRefGoogle Scholar
  90. Vernier PT, Ziegler MJ, Sun Y, Chang WV, Gundersen MA, Tieleman DP (2006a) Nanopore formation and phosphatidylserine externalization in a phospholipid bilayer at high transmembrane potential. J Am Chem Soc 128:6288–6289PubMedCrossRefGoogle Scholar
  91. Vernier PT, Ziegler MJ, Sun Y, Gundersen MA, Tieleman DP (2006b) Nanopore-facilitated, voltage-driven phosphatidylserine translocation in lipid bilayers—in cells and in silico. Phys Biol 3:233–247PubMedCrossRefGoogle Scholar
  92. Vernier PT, Levine ZA, Wu H-S, Joubert V, Ziegler MJ, Mir LM, Tieleman DP (2009) Electroporating fields target oxidatively damaged areas in the cell membrane. PLoS ONE 4:e7966PubMedCrossRefGoogle Scholar
  93. Weaver JC (2003) Electroporation of biological membranes from multicellular to nano scales. IEEE Trans Dielectr Electr Insul 10:754–768CrossRefGoogle Scholar
  94. Weaver JC, Chizmadzhev YA (1996) Theory of electroporation: a review. Bioelectrochem Bioenerg 41:135–160CrossRefGoogle Scholar
  95. Wiener MC, White SH (1992) Structure of fluid dioleylphosphatidylcholine bilayer determined by joint refinement of X-ray and neutron diffraction data. III. Complete structure. Biophys J 61:434–447PubMedCrossRefGoogle Scholar
  96. Yang Y, Henderson D, Crozier P, Rowley RL, Busath DD (2002) Permeation of ions through a model biological channel: effect of periodic boundary condition and cell size. Mol Phys 100:3011–3019CrossRefGoogle Scholar
  97. Zhong Q, Moore PB, Newns DM, Klein ML (1998) Molecular dynamics study of the LS3 voltage-gated ion channel. FEBS Lett 427:267–270PubMedCrossRefGoogle Scholar
  98. Ziegler MJ, Vernier PT (2008) Interface water dynamics and porating electric fields for phospholipid bilayers. J Phys Chem B 112:13588–13596PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.UMR Structure et Réactivité des Systèmes Moléculaires ComplexesCNRS-Université de LorraineVandoeuvre-lès-Nancy, CedexFrance
  2. 2.Institute for Computational Molecular ScienceTemple UniversityPhiladelphiaUSA
  3. 3.Unité Mixte de Recherches CNRS UHP 7565Université de LorraineVandoeuvre-lès-Nancy, CedexFrance

Personalised recommendations