NaCl Interactions with Phosphatidylcholine Bilayers Do Not Alter Membrane Structure but Induce Long-Range Ordering of Ions and Water

  • Christopher C. Valley
  • Jason D. Perlmutter
  • Anthony R. Braun
  • Jonathan N. Sachs


It is generally accepted that ions interact directly with lipids in biological membranes. Decades of biophysical studies on pure lipid bilayer systems have shown that only certain types of ions, most significantly large anions and multivalent cations, can fundamentally alter the structure and dynamics of lipid bilayers. It has long been accepted that at physiological concentrations NaCl ions do not alter the physical behavior or structure of bilayers composed solely of zwitterionic phosphatidylcholine (PC) lipids. Recent X-ray scattering experiments have reaffirmed this dogma, showing that below 1 M concentration, NaCl does not significantly alter bilayer structure. However, despite this history, there is an ongoing controversy within the molecular dynamics (MD) simulation community regarding NaCl/PC interactions. In particular, the CHARMM and GROMOS force fields show dramatically different behavior, including the effect on bilayer structure, surface potential, and the ability to form stable, coordinated ion–lipid complexes. Here, using long-timescale, constant-pressure simulations under the newest version of the CHARMM force field, we find that Na+ and Cl associate with PC head groups in a POPC bilayer with approximately equal, though weak, affinity, and that the salt has a negligible effect on bilayer structure, consistent with earlier CHARMM results and more recent X-ray data. The results suggest that interpretation of simulations where lipids interact with charged groups of any sort, including charged proteins, must be carefully scrutinized.


Ions Lipid bilayer MD simulation 

Supplementary material

232_2011_9395_MOESM1_ESM.pdf (1.3 mb)
Supplementary material 1 (PDF 1380 kb)


  1. Bangham AD (1968) Membrane models with phospholipids. Prog Biophys Mol Biol 18:29–95CrossRefGoogle Scholar
  2. Berger O, Edholm O, Jahnig F (1997) Molecular dynamics simulations of a fluid bilayer of dipalmitoylphosphatidylcholine at full hydration, constant pressure, and constant temperature. Biophys J 72:2002–2013PubMedCrossRefGoogle Scholar
  3. Bockmann RA, Grubmuller H (2004) Multistep binding of divalent cations to phospholipid bilayers: a molecular dynamics study. Angew Chem Int Ed Engl 43:1021–1024PubMedCrossRefGoogle Scholar
  4. Bockmann RA, Hac A, Heimburg T, Grubmuller H (2003) Effect of sodium chloride on a lipid bilayer. Biophys J 85:1647–1655PubMedCrossRefGoogle Scholar
  5. Brooks BR, Brooks CL 3rd, Mackerell AD Jr, Nilsson L, Petrella RJ, Roux B, Won Y, Archontis G, Bartels C, Boresch S, Caflisch A, Caves L, Cui Q, Dinner AR, Feig M, Fischer S, Gao J, Hodoscek M, Im W, Kuczera K, Lazaridis T, Ma J, Ovchinnikov V, Paci E, Pastor RW, Post CB, Pu JZ, Schaefer M, Tidor B, Venable RM, Woodcock HL, Wu X, Yang W, York DM, Karplus M (2009) CHARMM: the biomolecular simulation program. J Comput Chem 30:1545–1614PubMedCrossRefGoogle Scholar
  6. Clarke RJ, Lupfert C (1999) Influence of anions and cations on the dipole potential of phosphatidylcholine vesicles: a basis for the Hofmeister effect. Biophys J 76:2614–2624PubMedCrossRefGoogle Scholar
  7. Cordomi A, Edholm O, Perez JJ (2008) Effect of ions on a dipalmitoyl phosphatidylcholine bilayer: a molecular dynamics simulation study. J Phys Chem B 112:1397–1408PubMedCrossRefGoogle Scholar
  8. Cunningham BA, Gelerinter E, Lis LJ (1988) Monovalent ion–phosphatidylcholine interactions: an electron paramagnetic resonance study. Chem Phys Lipids 46:205–211PubMedCrossRefGoogle Scholar
  9. Eisenberg M, Gresalfi T, Riccio T, McLaughlin S (1979) Adsorption of monovalent cations to bilayer membranes containing negative phospholipids. Biochemistry 18:5213–5223PubMedCrossRefGoogle Scholar
  10. Grossfield A, Zuckerman DM (2009) Quantifying uncertainty and sampling quality in biomolecular simulations. Annu Rep Comput Chem 5:23–48PubMedCrossRefGoogle Scholar
  11. Gurtovenko AA (2005) Asymmetry of lipid bilayers induced by monovalent salt: atomistic molecular-dynamics study. J Chem Phys 122:244902PubMedCrossRefGoogle Scholar
  12. Hanai T, Haydon DA, Taylor J (1965) Polar group orientation and the electrical properties of lecithin bimolecular leaflets. J Theor Biol 9:278–296PubMedCrossRefGoogle Scholar
  13. Khavrutskii IV, Gorfe AA, Lu B, McCammon JA (2009) Free energy for the permeation of Na(+) and Cl(−) ions and their ion-pair through a zwitterionic dimyristoyl phosphatidylcholine lipid bilayer by umbrella integration with harmonic Fourier beads. J Am Chem Soc 131:1706–1716PubMedCrossRefGoogle Scholar
  14. Klauda JB, Venable RM, Freites JA, O’Connor JW, Tobias DJ, Mondragon-Ramirez C, Vorobyov I, MacKerell AD Jr, Pastor RW (2010) Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. J Phys Chem B 114:7830–7843PubMedCrossRefGoogle Scholar
  15. Lee SJ, Song Y, Baker NA (2008) Molecular dynamics simulations of asymmetric NaCl and KCl solutions separated by phosphatidylcholine bilayers: potential drops and structural changes induced by strong Na+-lipid interactions and finite size effects. Biophys J 94:3565–3576PubMedCrossRefGoogle Scholar
  16. Loosley-Millman ME, Rand RP, Parsegian VA (1982) Effects of monovalent ion binding and screening on measured electrostatic forces between charged phospholipid bilayers. Biophys J 40:221–232PubMedCrossRefGoogle Scholar
  17. Macdonald PM, Seelig J (1988) Anion binding to neutral and positively charged lipid membranes. Biochemistry 27:6769–6775PubMedCrossRefGoogle Scholar
  18. McDaniel RV, McLaughlin A, Winiski AP, Eisenberg M, McLaughlin S (1984) Bilayer membranes containing the ganglioside GM1: models for electrostatic potentials adjacent to biological membranes. Biochemistry 23:4618–4624PubMedCrossRefGoogle Scholar
  19. Pabst G, Hodzic A, Strancar J, Danner S, Rappolt M, Laggner P (2007) Rigidification of neutral lipid bilayers in the presence of salts. Biophys J 93:2688–2696PubMedCrossRefGoogle Scholar
  20. Pandit SA, Bostick D, Berkowitz ML (2003) Molecular dynamics simulation of a dipalmitoylphosphatidylcholine bilayer with NaCl. Biophys J 84:3743–3750PubMedCrossRefGoogle Scholar
  21. Parsegian VA, Fuller N, Rand RP (1979) Measured work of deformation and repulsion of lecithin bilayers. Proc Natl Acad Sci USA 76:2750–2754PubMedCrossRefGoogle Scholar
  22. Petrache HI, Tristram-Nagle S, Gawrisch K, Harries D, Parsegian VA, Nagle JF (2004) Structure and fluctuations of charged phosphatidylserine bilayers in the absence of salt. Biophys J 86:1574–1586PubMedCrossRefGoogle Scholar
  23. Petrache HI, Kimchi I, Harries D, Parsegian VA (2005) Measured depletion of ions at the biomembrane interface. J Am Chem Soc 127:11546–11547PubMedCrossRefGoogle Scholar
  24. Petrache HI, Zemb T, Belloni L, Parsegian VA (2006) Salt screening and specific ion adsorption determine neutral-lipid membrane interactions. Proc Natl Acad Sci USA 103:7982–7987PubMedCrossRefGoogle Scholar
  25. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kale L, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26:1781–1802PubMedCrossRefGoogle Scholar
  26. Roux M, Bloom M (1990) Ca2+, Mg2+, Li+, Na+, and K+ distributions in the headgroup region of binary membranes of phosphatidylcholine and phosphatidylserine as seen by deuterium NMR. Biochemistry 29:7077–7089PubMedCrossRefGoogle Scholar
  27. Roux B, Luo Y (2010) Simulation of osmotic pressure in concentrated aqueous salt solutions. J Phys Chem Lett 1:183–189CrossRefGoogle Scholar
  28. Rydall JR, Macdonald PM (1992) Investigation of anion binding to neutral lipid membranes using 2H NMR. Biochemistry 31:1092–1099PubMedCrossRefGoogle Scholar
  29. Sachs JN, Woolf TB (2003) Understanding the Hofmeister effect in interactions between chaotropic anions and lipid bilayers: molecular dynamics simulations. J Am Chem Soc 125:8742–8743PubMedCrossRefGoogle Scholar
  30. Sachs JN, Petrache HI, Woolf TB (2003) Interpretation of small angle X-ray measurements guided by molecular dynamics simulations of lipid bilayers. Chem Phys Lipids 126:211–223PubMedCrossRefGoogle Scholar
  31. Sachs JN, Nanda H, Petrache HI, Woolf TB (2004) Changes in phosphatidylcholine headgroup tilt and water order induced by monovalent salts: molecular dynamics simulations. Biophys J 86:3772–3782PubMedCrossRefGoogle Scholar
  32. Szekely O, Steiner A, Szekely P, Amit E, Asor R, Tamburu C, Raviv U (2011) The structure of ions and zwitterionic lipids regulates the charge of dipolar membranes. Langmuir 27:7419–7438PubMedCrossRefGoogle Scholar
  33. Tatulian SA (1987) Binding of alkaline-earth metal cations and some anions to phosphatidylcholine liposomes. Eur J Biochem 170:413–420PubMedCrossRefGoogle Scholar
  34. Vacha R, Siu SW, Petrov M, Bockmann RA, Barucha-Kraszewska J, Jurkiewicz P, Hof M, Berkowitz ML, Jungwirth P (2009) Effects of alkali cations and halide anions on the DOPC lipid membrane. J Phys Chem A 113:7235–7243PubMedCrossRefGoogle Scholar
  35. van Buuren AR, Marrink SJ, Berendsen HJ (1993) A molecular dynamics study of the decane/water interface. J Phys Chem 97:9206–9212CrossRefGoogle Scholar
  36. Winiski AP, McLaughlin AC, McDaniel RV, Eisenberg M, McLaughlin S (1986) An experimental test of the discreteness-of-charge effect in positive and negative lipid bilayers. Biochemistry 25:8206–8214PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Christopher C. Valley
    • 1
  • Jason D. Perlmutter
    • 1
  • Anthony R. Braun
    • 1
  • Jonathan N. Sachs
    • 1
  1. 1.Department of Biomedical EngineeringUniversity of MinnesotaMinneapolisUSA

Personalised recommendations