Effects of Lipid-Analog Detergent Solubilization on the Functionality and Lipidic Cubic Phase Mobility of the Torpedo californica Nicotinic Acetylcholine Receptor

  • Luis F. Padilla-Morales
  • Claudio L. Morales-Pérez
  • Pamela C. De La Cruz-Rivera
  • Guillermo Asmar-Rovira
  • Carlos A. Báez-Pagán
  • Orestes Quesada
  • José A. Lasalde-Dominicci


Over the past three decades, the Torpedo californica nicotinic acetylcholine receptor (nAChR) has been one of the most extensively studied membrane protein systems. However, the effects of detergent solubilization on nAChR stability and function are poorly understood. The use of lipid-analog detergents for nAChR solubilization has been shown to preserve receptor stability and functionality. The present study used lipid-analog detergents from phospholipid-analog and cholesterol-analog detergent families for solubilization and affinity purification of the receptor and probed nAChR ion channel function using planar lipid bilayers (PLBs) and stability using analytical size exclusion chromatography (A-SEC) in the detergent-solubilized state. We also examined receptor mobility on the lipidic cubic phase (LCP) by measuring the nAChR mobile fraction and diffusion coefficient through fluorescence recovery after photobleaching (FRAP) experiments using lipid-analog and non-lipid-analog detergents. Our results show that it is possible to isolate stable and functional nAChRs using lipid-analog detergents, with characteristic ion channel currents in PLBs and minimal aggregation as observed in A-SEC. Furthermore, fractional mobility and diffusion coefficient values observed in FRAP experiments were similar to the values observed for these parameters in the recently LCP-crystallized β2-adrenergic receptor. The overall results show that phospholipid-analog detergents with 16 carbon acyl-chains support nAChR stability, functionality and LCP mobility.


Detergent nAChR Lipidic cubic phase FRAP Fluorescence recovery Planar lipid bilayer 



This work was supported by National Institutes of Health (NIH) grants 2RO1GM56371-12, 5T34GM07821-31, Minority Access to Research Careers (MARC) and 2R25GM061151; Research Initiative for Scientific Enhancement (RISE); University of Puerto Rico Río, Piedras Campus Institutional Funds for Research; and the Specialized Neurosciences Research Program (SNRP) U54NS0433011. We acknowledge the contribution to this study by grants 1S10RR 13705-01 and DBI-0923132 to establish and upgrade the Confocal Microscopy Facility at the University of Puerto Rico (CIF-UPR) and the University of Puerto Rico Institutional Funds. We thank Dr. Raymond Stevens for access to the A-SEC instrumentation, Dr. Vadim Cherezov for expert advice in FRAP, Dr. Hernán Martínez for his commentaries about FRAP data analysis and Manuel Delgado-Vélez for critical reading.

Supplementary material

232_2011_9392_MOESM1_ESM.pdf (205 kb)
Supplementary material 1 (PDF 204 kb)


  1. Asmar-Rovira GA, Asseo-García AM, Quesada O, Hanson MA, Cheng A, Nogueras C, Lasalde-Dominicci JA, Stevens RC (2008) Biophysical and ion channel functional characterization of the Torpedo californica nicotinic acetylcholine receptor in varying detergent–lipid environments. J Membr Biol 223:13–26PubMedCrossRefGoogle Scholar
  2. Axelrod D, Koppel DE, Schlessinger J, Elson E, Webb WW (1976) Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. Biophys J 16:1055–1069PubMedCrossRefGoogle Scholar
  3. Bocquet N, Nury H, Baaden M, Le Poupon C, Changeux JP, Delarue M, Corringer PJ (2009) X-ray structure of a pentameric ligand-gated ion channel in an apparently open conformation. Nature 457:111–114PubMedCrossRefGoogle Scholar
  4. Caffrey M, Cherezov V (2009) Crystallizing membrane proteins using lipidic mesophases. Nat Protoc 4:707–731CrossRefGoogle Scholar
  5. Cherezov V, Rosenbaum DM, Hanson MA, Rasmussen SG, Thian FS, Kobilka TS, Choi HJ, Kuhn P, Weis V, Kobilka BK, Stevens RC (2007) High-resolution crystal structure of an engineered human beta2-adrenergic G protein–coupled receptor. Science 318:1258–1265PubMedCrossRefGoogle Scholar
  6. Cherezov V, Liu J, Griffith M, Hanson MH, Stevens RC (2008) FRAP assay for pre-screening membrane proteins for in meso crystallization. Cryst Growth Des 8:4307–4315PubMedCrossRefGoogle Scholar
  7. Chien EY, Liu W, Zhao Q, Katritch V, Han GW, Hanson MA, Shi L, Newman AH, Javitch JA, Cherezov V, Stevens RC (2010) Structure of the human dopamine D3 receptor in complex with a D2/D3 selective antagonist. Science 330:1091–1095PubMedCrossRefGoogle Scholar
  8. Corringer PJ, Baaden M, Bocquet N, Delarue M, Dufresne V, Nury H, Prevost M, Van Renterghem V (2010) Atomic structure and dynamics of pentameric ligand-gated ion channels: new insight from bacterial homologues. J Physiol 588:565–572PubMedCrossRefGoogle Scholar
  9. Cymes GD, Grosman C, Auerbach A (2002) Structure of the transition state of gating in the acetylcholine receptor channel pore: a phi-value analysis. Biochemistry 41:5548–5555PubMedCrossRefGoogle Scholar
  10. de Jonge WJ, Ulloa L (2007) The alpha7 nicotinic acetylcholine receptor as a pharmacological target for inflammation. Br J Pharmacol 151:915–929PubMedCrossRefGoogle Scholar
  11. Dellisanti CD, Yao Y, Stroud JC, Wang ZZ, Chen L (2007) Crystal structure of the extracellular domain of nAChR α1 bound to α-bungarotoxin at 1.94 Å resolution. Nat Neurosci 10:953–962PubMedCrossRefGoogle Scholar
  12. DeMichele-Sweet MA, Sweet RA (2010) Genetics of psychosis in Alzheimer’s disease: a review. J Alzheimers Dis 19:761–780PubMedGoogle Scholar
  13. Gahring LC, Persiyanov K, Rogers SW (2005) Mouse strain-specific changes in nicotinic expression with age. Neurobiol Aging 26:973–980PubMedCrossRefGoogle Scholar
  14. Govind AP, Vezina P, Green WN (2009) Nicotine-induced upregulation of nicotinic receptors: underlying mechanisms and relevance to nicotine addiction. Biochem Pharmacol 78:756–765PubMedCrossRefGoogle Scholar
  15. Grosman C, Salamone FN, Sine SM, Auerbach A (2000) The extracellular linker of muscle acetylcholine receptor channels is a gating control element. J Gen Physiol 116:327–340PubMedCrossRefGoogle Scholar
  16. Guzman GR, Santiago J, Ricardo A, Marti-Arbona R, Rojas LV, Lasalde-Dominicci JA (2003) Tryptophan scanning mutagenesis in the alphaM3 transmembrane domain of the Torpedo californica acetylcholine receptor: functional and structural implications. Biochemistry 42:12243–12250PubMedCrossRefGoogle Scholar
  17. Hamouda AK, Sanghvi M, Sauls D, Machu TK, Blanton M (2006) Assessing the lipid requirements of the Torpedo californica nicotinic acetylcholine receptor. Biochemistry 45:4327–4337PubMedCrossRefGoogle Scholar
  18. Hertling-Jaweed S, Bandini G, Muller-Fahrnow A, Dommes V, Hucho F (1988) Rapid preparation of the nicotinic acetylcholine receptor for crystallization in detergent solution. FEBS Lett 241:29–32PubMedCrossRefGoogle Scholar
  19. Hilf R, Dutzler R (2008) X-ray structure of a prokaryotic pentameric ligand-gated ion channel. Nature 452:375–379PubMedCrossRefGoogle Scholar
  20. Jaakola VP, Griffith MT, Hanson MA, Cherezov V, Chien EY, Lane JR, Ijzerman AP, Stevens RC (2008) The 2.6 angstrom crystal structure of a human A2A adenosine receptor bound to an antagonist. Science 322:1211–1217PubMedCrossRefGoogle Scholar
  21. Landau EM, Rosenbusch JP (1996) Lipidic cubic phase: a novel concept for the crystallization of membrane proteins. Proc Natl Acad Sci USA 93:14532–14535PubMedCrossRefGoogle Scholar
  22. Langosch D, Thomas L, Betz H (1988) Conserved quaternary structure of ligand-gated ion channels: the postsynaptic glycine receptor is a pentamer. Proc Natl Acad Sci USA 85:7394–7398PubMedCrossRefGoogle Scholar
  23. Leite JF, Blanton MP, Shahgholi M, Dougherty DA, Lester HA (2003) Conformation-dependent hydrophobic photolabeling of the nicotinic receptor: electrophysiology-coordinated photochemistry and mass spectrometry. Proc Natl Acad Sci USA 100:13054–13059PubMedCrossRefGoogle Scholar
  24. Lester RA (2004) Activation and desensitization of heteromeric neuronal nicotinic receptors: implications for non-synaptic transmission. Bioorg Med Chem Lett 14:1897–1900PubMedCrossRefGoogle Scholar
  25. Liu W, Hanson MA, Stevens RC, Cherezov V (2010) LCP-Tm: an assay to measure and understand integrity of membrane proteins in a membrane environment. Biophys J 98:1539–1548PubMedCrossRefGoogle Scholar
  26. McArdle PF, Rutherford S, Mitchell BD, Damcott CM, Wang Y, Ramachandran V, Ott S, Chang YP, Levy D, Steinle N (2008) Nicotinic acetylcholine receptor subunit variants are associated with blood pressure; findings in the Old Order Amish and replication in the Framingham Heart Study. BMC Med Genet 9:67PubMedCrossRefGoogle Scholar
  27. Méthot N, Baezinger JE (1998) Secondary structure of the exchange resistance core from the nicotinic acetylcholine receptor probed directly by infrared spectroscopy and hydrogen/deuterium exchange. Biochemistry 37:4815–14822CrossRefGoogle Scholar
  28. Miyazawa A, Fujiyoshi Y, Unwin N (2003) Structure and gating mechanism of the acetylcholine receptor pore. Nature 423:949–955PubMedCrossRefGoogle Scholar
  29. Paas Y, Cartaud J, Recouvreur M, Grailhe R, Dufresne V, Pebay-Peyroula E, Landau EM, Changeux JP (2003) Electron microscopic evidence for nucleation and growth of 3D acetylcholine receptor microcrystals in structured lipid detergent matrices. Proc Natl Acad Sci USA 100:11309–11314PubMedCrossRefGoogle Scholar
  30. Pucadyil TJ, Chattopadhyay A (2006) Confocal fluorescence recovery after photobleaching of green fluorescent protein in solution. J Fluoresc 16:87–94PubMedCrossRefGoogle Scholar
  31. Quik M, Huang LZ, Parameswaran N, Bordia T, Campos C, Perez XA (2009) Multiple roles for nicotine in Parkinson’s disease. Biochem Pharmacol 78:677–685PubMedCrossRefGoogle Scholar
  32. Santiago J, Guzman GR, Torruellas K, Rojas LV, Lasalde-Dominicci JA (2004) Tryptophan scanning mutagenesis in the TM3 domain of the Torpedo californica acetylcholine receptor beta subunit reveals an alpha-helical structure. Biochemistry 43:10064–10070PubMedCrossRefGoogle Scholar
  33. Unwin N (2005) Refined structure of the nicotinic acetylcholine receptor at 4 Å resolution. J Mol Biol 46:967–989CrossRefGoogle Scholar
  34. Wu B, Chien EY, Mol CD, Fenalti G, Liu W, Katritch V, Abagyan R, Brooun A, Wells P, Bi FC, Hamel DJ, Kuhn P, Handel TM, Cherezov V, Stevens RC (2010) Structures of the CXCR4 chemokine GPCR with small-molecule and cyclic peptide antagonists. Science 330:1066–1071PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Luis F. Padilla-Morales
    • 1
  • Claudio L. Morales-Pérez
    • 2
  • Pamela C. De La Cruz-Rivera
    • 1
  • Guillermo Asmar-Rovira
    • 3
  • Carlos A. Báez-Pagán
    • 2
  • Orestes Quesada
    • 4
  • José A. Lasalde-Dominicci
    • 2
  1. 1.Department of ChemistryUniversity of Puerto RicoSan JuanUSA
  2. 2.Department of BiologyUniversity of Puerto RicoSan JuanUSA
  3. 3.Department of Molecular BiologyThe Scripps Research InstituteLa JollaUSA
  4. 4.Department of Physical SciencesUniversity of Puerto RicoSan JuanUSA

Personalised recommendations