Influence of Cholesterol and β-Sitosterol on the Structure of EYPC Bilayers

  • Jana GallováEmail author
  • Daniela Uhríková
  • Norbert Kučerka
  • Miroslava Svorková
  • Sergio S. Funari
  • Tatiana N. Murugova
  • László Almásy
  • Milan Mazúr
  • Pavol Balgavý


The influence of cholesterol and β-sitosterol on egg yolk phosphatidylcholine (EYPC) bilayers is compared. Different interactions of these sterols with EYPC bilayers were observed using X-ray diffraction. Cholesterol was miscible with EYPC in the studied concentration range (0–50 mol%), but crystallization of β-sitosterol in EYPC bilayers was observed at X ≥ 41 mol% as detected by X-ray diffraction. Moreover, the repeat distance (d) of the lamellar phase was similar upon addition of the two sterols up to mole fraction 17%, while for X ≥ 17 mol% it became higher in the presence of β-sitosterol compared to cholesterol. SANS data on suspensions of unilamellar vesicles showed that both cholesterol and β-sitosterol similarly increase the EYPC bilayer thickness. Cholesterol in amounts above 33 mol% decreased the interlamellar water layer thickness, probably due to “stiffening” of the bilayer. This effect was not manifested by β-sitosterol, in particular due to the lower solubility of β-sitosterol in EYPC bilayers. Applying the formalism of partial molecular areas, it is shown that the condensing effect of both sterols on the EYPC area at the lipid–water interface is small, if any. The parameters of ESR spectra of spin labels localized in different regions of the EYPC bilayer did not reveal any differences between the effects of cholesterol and β-sitosterol in the range of full miscibility.


Cholesterol β-Sitosterol Plant sterol Egg yolk phosphatidylcholine Repeat distance Bilayer thickness Undulation SANS X-ray diffraction ESR 



This work was supported by the European Commission through the Access Activities of the Integrated Infrastructure Initiative for Neutron Scattering and Muon Spectroscopy (NMI3); the European Commission under the 6th Framework Programme through the Key Action: Strengthening the European Research Area, Research Infrastructures, contract RII3-CT-2003-505925; the Dubna JINR 07-04-1069-09/2011 project; and the VEGA 1/0295/08 and 1/0159/11 (P. B.) and 1/0292/09 (D. U.) grants. The research leading to these results has received funding from the European Community’s Seventh Framework Programme (FP7/2007-2013) under grant 226716 (HASYLAB project I-20080187 EC, to D. U.).


  1. Atkins PW (1990) Physical chemistry, 4th edn. Oxford University Press, Oxford, pp 155–157Google Scholar
  2. Awad AB, Fink CS (2000) Phytosterols as anticancer dietary components: evidence and mechanism of action. J Nutr 130:2127–2130PubMedGoogle Scholar
  3. Balgavý P, Gallová J, Švajdlenka E, Kutejová E (1992) Probing the membrane polar region with 4-(N-hexadecyldimethylammonium)-2,2,6,6-tetramethylpiperidinyloxyl bromide spin label. Acta Phys Slov 42:228–245Google Scholar
  4. Bernsdorff C, Winter R (2003) Differential properties of the sterols cholesterol, ergosterol, β-sitosterol, trans-7-dehydrocholesterol, stigmasterol and lanosterol on DPPC bilayer order. J Phys Chem B 107:10658–10664CrossRefGoogle Scholar
  5. Bigi A, Roveri N (1991) Fibre diffraction: collagen. In: Ebashi S, Koch M, Rubenstein E (eds) Handbook on synchrotron radiation. Elsevier, Amsterdam, pp 199–239Google Scholar
  6. Chapman D (1962) The polymorphism of glycerides. Chem Rev 62:433–453CrossRefGoogle Scholar
  7. de Almeida RFM, Fedorov A, Prieto M (2003) Sphingomyelin/phosphatidylcholine/cholesterol phase diagram: boundaries and composition of lipid rafts. Biophys J 85:2406–2416PubMedCrossRefGoogle Scholar
  8. Edholm O, Nagle JF (2005) Areas of molecules in membranes consisting of mixtures. Biophys J 89:1827–1832PubMedCrossRefGoogle Scholar
  9. Filípek J, Gelienová K, Kovács P, Balgavý P (1993) Effect of lipid autoperoxidation on the activity of the sarcoplasmic-reticulum (Ca2+–Mg2+) ATPase reconstituted into egg-yolk phosphatidylcholine bilayers. Gen Physiol Biophys 12:55–68PubMedGoogle Scholar
  10. Gallová J, Uhríková D, Kučerka N, Teixeira J, Balgavý P (2008) Hydrophobic thickness, lipid surface area and polar region hydration in monounsaturated diacylphosphatidylcholine bilayers: SANS study of effects of cholesterol and beta-sitosterol in unilamellar vesicles. Biochim Biophys Acta 1778:2627–2632PubMedCrossRefGoogle Scholar
  11. Gallová J, Uhríková D, Kučerka N, Teixeira J, Balgavý P (2010) Partial area of cholesterol in monounsaturated diacylphosphatidylcholine bilayers. Chem Phys Lipids 163:765–770PubMedCrossRefGoogle Scholar
  12. Gallová J, Uhríková D, Doktorovová S, Funari SS, Teixeira J, Balgavý P (2011) The influence of cholesterol and β-sitosterol on the structure of saturated diacylphosphatidylcholine bilayers. Eur Biophys J 40:153–163PubMedCrossRefGoogle Scholar
  13. Gao W, Chen L, Wu F, Yu Z (2008) Liquid ordered phase of binary mixtures containing dipalmitoylphosphatidylcholine and sterols. Acta Phys Chim Sin 24:1149–1154CrossRefGoogle Scholar
  14. Greenwood AI, Tristram-Nagle S, Nagle JF (2006) Partial molecular volumes of lipids and cholesterol. Chem Phys Lipids 143:1–10PubMedCrossRefGoogle Scholar
  15. Greenwood AI, Pan JJ, Mills TT, Nagle JF, Epand RM, Tristram-Nagle S (2008) CRAC motif peptide of the HIV-1 gp41 protein thins SOPC membranes and interacts with cholesterol. Biochim Biophys Acta 1778:1120–1130PubMedCrossRefGoogle Scholar
  16. Hac-Wydro K, Wydro P, Jagoda A, Kapusta J (2007) The study on the interaction between phytosterols and phospholipids in model membranes. Chem Phys Lipids 150:22–34PubMedCrossRefGoogle Scholar
  17. Halling KK, Slotte JP (2004) Membrane properties of plant sterols in phospholipid bilayers as determined by differential scanning calorimetry, resonance energy transfer and detergent-induced solubilization. Biochim Biophys Acta 1664:161–171PubMedCrossRefGoogle Scholar
  18. Hauser H, Poupart G (2009) Lipid structure. In: Yeagle PL (ed) The structure of biological membranes. CRC Press, London, pp 1–52Google Scholar
  19. Hodzic A, Rappolt M, Amenitsch H, Laggner P, Pabst G (2008) Differential modulation of membrane structure and fluctuations by plant sterols and cholesterol. Biophys J 94:3935–3944PubMedCrossRefGoogle Scholar
  20. Huang JY, Feigenson GW (1999) A microscopic interaction model of maximum solubility of cholesterol in lipid bilayers. Biophys J 76:2142–2157PubMedCrossRefGoogle Scholar
  21. Hyslop PA, Morel B, Sauerheber RD (1990) Organization and interaction of cholesterol and phosphatidylcholine in model bilayer membranes. Biochemistry 29:1025–1038PubMedCrossRefGoogle Scholar
  22. Korstanje LJ, Vanginkel G, Levine YK (1990) Effects of steroid molecules on the dynamic structure of dioleoylphosphatidylcholine and digalactosyldiacylglycerol bilayers. Biochim Biophys Acta 1022:155–162PubMedCrossRefGoogle Scholar
  23. Krajewski-Bertrand MA, Milon A, Hartmann MA (1992) Deuterium-NMR investigation of plant sterol effects on soybean phosphatidylcholine acyl chain ordering. Chem Phys Lipids 63:235–241CrossRefGoogle Scholar
  24. Kučerka N, Kiselev MA, Balgavý P (2004a) Determination of bilayer thickness and lipid surface area in unilamellar dimyristoylphosphatidylcholine vesicles from small-angle neutron scattering curves: a comparison of evaluation methods. Eur Biophys J 33:328–334PubMedCrossRefGoogle Scholar
  25. Kučerka N, Nagle JF, Feller SE, Balgavý P (2004b) Models to analyze small-angle neutron scattering from unilamellar lipid vesicles. Phys Rev E 69:051903CrossRefGoogle Scholar
  26. Kučerka N, Pencer J, Nieh MP, Katsaras J (2007) Influence of cholesterol on the bilayer properties of monounsaturated phosphatidylcholine unilamellar vesicles. Eur Phys J E 23:247–254PubMedCrossRefGoogle Scholar
  27. Kučerka N, Nagle JF, Sachs JN, Feller SE, Pencer J, Jackson A, Katsaras J (2008a) Lipid bilayer structure determined by the simultaneous analysis of neutron and X-ray scattering data. Biophys J 95:2356–2367PubMedCrossRefGoogle Scholar
  28. Kučerka N, Perlmutter JD, Pan J, Tristram-Nagle S, Katsaras J, Sachs JN (2008b) The effect of cholesterol on short- and long-chain monounsaturated lipid bilayers as determined by molecular dynamics simulations and X-ray scattering. Biophys J 95:2792–2805PubMedCrossRefGoogle Scholar
  29. Kusumi A, Subczynski WK, Pasenkiewiczgierula M, Hyde JS, Merkle H (1986) Spin-label studies on phosphatidylcholine-cholesterol membranes—effects of alkyl chain-length and unsaturation in the fluid phase. Biochim Biophys Acta 854:307–317PubMedCrossRefGoogle Scholar
  30. Lapper RD, Paterson SJ, Smith IC (1972) A spin label study of the influence of cholesterol on egg lecithin multibilayers. Can J Biochem 50:869–881PubMedGoogle Scholar
  31. Ling WH, Jones PJH (1995) Dietary phytosterols—a review of metabolism, benefits and side-effects. Life Sci 57:195–206PubMedCrossRefGoogle Scholar
  32. Macdonald RC, Macdonald RI, Menco BPM, Takeshita K, Subbarao NK, Hu LR (1991) Small-volume extrusion apparatus for preparation of large, unilamellar vesicles. Biochim Biophys Acta 1061:297–303PubMedCrossRefGoogle Scholar
  33. Mateo CR, Acuna AU, Brochon JC (1995) Liquid-crystalline phases of cholesterol lipid bilayers as revealed by the fluorescence of trans-parinaric acid. Biophys J 68:978–987CrossRefGoogle Scholar
  34. McKersie BD, Thompson JE (1979) Influence of plant sterols on the phase properties of phospholipid bilayers. Plant Physiol 63:802–805PubMedCrossRefGoogle Scholar
  35. Miao L, Nielsen M, Thewalt J, Ipsen JH, Bloom M, Zuckermann MJ, Mouritsen OG (2002) From lanosterol to cholesterol: structural evolution and differential effects on lipid bilayers. Biophys J 82:1429–1444PubMedCrossRefGoogle Scholar
  36. Mouritsen OG, Zuckermann MJ (2004) What’s so special about cholesterol? Lipids 39:1101–1113PubMedCrossRefGoogle Scholar
  37. Nagle JF, Tristram-Nagle S (2000) Structure of lipid bilayers. Biochim Biophys Acta 1469:159–195PubMedGoogle Scholar
  38. Ovesná Z, Vachálková A, Horváthová K (2004) Taraxasterol and beta-sitosterol: new naturally compounds with chemoprotective/chemopreventive effects. Neoplasma 51:407–414PubMedGoogle Scholar
  39. Pan JJ, Mills TT, Tristram-Nagle S, Nagle JF (2008) Cholesterol perturbs lipid bilayers nonuniversally. Phys Rev Lett 100:198103PubMedCrossRefGoogle Scholar
  40. Pan J, Tristram-Nagle S, Nagle JF (2009) Effect of cholesterol on structural and mechanical properties of membranes depends on lipid chain saturation. Phys Rev E Stat Nonlinear Soft Matter Phys 80:021931CrossRefGoogle Scholar
  41. Pencer J, Nieh MP, Harroun TA, Krueger S, Adams C, Katsaras J (2005) Bilayer thickness and thermal response of dimyristoylphosphatidylcholine unilamellar vesicles containing cholesterol, ergosterol and lanosterol: a small-angle neutron scattering study. Biochim Biophys Acta 1720:84–91PubMedCrossRefGoogle Scholar
  42. Petrache HI, Harries D, Parsegian VA (2004) Alteration of lipid membrane rigidity by cholesterol and its metabolic precursors. Macromol Symp 219:39–50CrossRefGoogle Scholar
  43. Plat J, Mensink RP (2005) Plant stanol and sterol esters in the control of blood cholesterol levels: mechanism and safety aspects. Am J Cardiol 96:15D–22DPubMedCrossRefGoogle Scholar
  44. Rog T, Pasenkiewicz-Gierula M (2006) Cholesterol effects on a mixed-chain phosphatidylcholine bilayer: a molecular dynamics simulation study. Biochimie 88:449–460PubMedCrossRefGoogle Scholar
  45. Scheidt HA, Muller P, Herrmann A, Huster D (2003) The potential of fluorescent and spin-labeled steroid analogs to mimic natural cholesterol. J Biol Chem 278:45563–45569PubMedCrossRefGoogle Scholar
  46. Schreier S, Polnaszek CF, Smith IC (1978) Spin labels in membranes. Problems in practice. Biochim Biophys Acta 515:395–436PubMedGoogle Scholar
  47. Schreier-Muccillo S, Marsh D, Dugas H, Schneider H, Smith ICP (1973) A spin probe study of the influence of cholesterol on motion and orientation of phospholipid in oriented multilayers and vesicles. Chem Phys Lipids 10:11–27PubMedCrossRefGoogle Scholar
  48. Singleton WS, Gray MS, Brown ML, White JL (1965) Chromatographically homogenous lecithin from egg phospholipids. J Am Oil Soc 42:53–56CrossRefGoogle Scholar
  49. Su YL, Li QZ, Chen L, Yu ZW (2007) Condensation effect of cholesterol, stigmasterol, and sitosterol on dipalmitoylphosphatidylcholine in molecular monolayers. Colloids Surf A Physicochem Eng Aspects 293:123–129CrossRefGoogle Scholar
  50. Sun WJ, Suter RM, Knewtson MA, Worthington CR, Tristram-Nagle S, Zhang R, Nagle JF (1994) Order and disorder in fully hydrated unoriented bilayers of gel phase dipalmitoylphosphatidylcholine. Phys Rev E 49:4665CrossRefGoogle Scholar
  51. Svorková M, Annus J, Gallová J (2006) Effect of cholesterol on the phospholipid bilayers: a spin label study. Acta Facult Pharm Univ Comeniane 53:238–244Google Scholar
  52. Thewalt JL, Bloom M (1992) Phosphatidylcholine–cholesterol phase-diagrams. Biophys J 63:1176–1181PubMedCrossRefGoogle Scholar
  53. Tristram-Nagle S, Liu Y, Legleiter J, Nagle JF (2002) Lipid bilayers: thermodynamics, structure, fluctuations, and interactions. Biophys J 83:3324PubMedCrossRefGoogle Scholar
  54. Uhríková D, Rybár P, Hianik T, Balgavý P (2007) Component volumes of unsaturated phosphatidylcholines in fluid bilayers: a densitometric study. Chem Phys Lipids 145:97–105PubMedCrossRefGoogle Scholar
  55. Veatch SL, Keller SL (2005) Miscibility phase diagrams of giant vesicles containing sphingomyelin. Phys Rev Lett 94:148101PubMedCrossRefGoogle Scholar
  56. Vist MR, Davis JH (1990) Phase equilibria of cholesterol/dipalmitoylphosphatidylcholine mixtures: 2H nuclear magnetic resonance and differential scanning calorimetry. Biochemistry 29:451–464PubMedCrossRefGoogle Scholar
  57. Weast RC (1969) Handbook of chemistry. Chemical Rubber Co., Cleveland, OHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Jana Gallová
    • 1
    Email author
  • Daniela Uhríková
    • 1
  • Norbert Kučerka
    • 1
    • 2
  • Miroslava Svorková
    • 1
  • Sergio S. Funari
    • 3
  • Tatiana N. Murugova
    • 4
  • László Almásy
    • 5
    • 6
  • Milan Mazúr
    • 7
  • Pavol Balgavý
    • 1
  1. 1.Department of Physical Chemistry of Drugs, Faculty of PharmacyComenius UniversityBratislavaSlovakia
  2. 2.Canadian Neutron Beam CentreNational Research CouncilChalk RiverCanada
  3. 3.HASYLAB at DESYHamburgGermany
  4. 4.Frank Laboratory of Neutron PhysicsJoint Institute for Nuclear ResearchDubnaRussia
  5. 5.Laboratory for Neutron Scattering, PSIVilligenSwitzerland
  6. 6.Research Institute for Solid State Physics and OpticsBudapestHungary
  7. 7.Faculty of Chemical and Food Technology, Institute of Physical Chemistry and Chemical PhysicsSlovak University of TechnologyBratislavaSlovakia

Personalised recommendations