Advertisement

The Journal of Membrane Biology

, Volume 242, Issue 1, pp 31–39 | Cite as

Palytoxin Induces Functional Changes of Anion Transport in Red Blood Cells: Metabolic Impact

  • Silvana FicarraEmail author
  • Annamaria Russo
  • Francesca Stefanizzi
  • Mario Mileto
  • Davide Barreca
  • Ersilia Bellocco
  • Giuseppina Laganà
  • Ugo Leuzzi
  • Bruno Giardina
  • Antonio Galtieri
  • Ester Tellone
Article

Abstract

Palytoxin (PTX) is classified as one of the most powerful marine biotoxins (of high molecular weight and no protein origin) because it is able to interact strongly with important cellular structures influencing their function in different biological processes. This study of the effects of PTX on red blood cells (RBC) extends the knowledge about its toxicity, which concerns not only the well-known action on Na+/K+-ATPase but also band 3 protein (B3 or AE1), the role of which is essential for anion transport and for the structure, function, and metabolic integrity of the erythrocyte. The effects of PTX on RBC can be summarized as follows: it alters the anionic flux and seriously compromises not only CO2 transport but also the metabolic modulation centered on the oxy–deoxy cycle of hemoglobin; it stabilizes the plasma membrane by preventing lipid peroxidation; and its effect does not lead to activation of caspases 3 and 8. From what is reported in steps 2 and 3, and on the basis of the results obtained on hemolysis, methemoglobin levels, and phosphatase activity, an increase of the reducing power of the erythrocytes (RBC) in the presence of PTX clearly emerges. The results have enabled us to outline some metabolic adaptations induced in the RBC by PTX.

Keywords

Band 3 protein Caspase 3 Erythrocytes Hemoglobin Metabolism Palytoxin 

References

  1. Artigas P, Gadsby DC (2003) Ion occlusion/deocclusion partial reactions in individual palytoxin-modified Na/K pumps. Ann N Y Acad Sci 986:116–126PubMedCrossRefGoogle Scholar
  2. Artigas P, Gadsby DC (2004) Large diameter of palytoxin-induced Na/K pump channels and modulation of palytoxin interaction by Na/K pump ligands. J Gen Physiol 123:357–376PubMedCrossRefGoogle Scholar
  3. Barreca D, Laganà G, Tellone E, Ficarra S, Leuzzi U, Galtieri A, Bellocco E (2009) Influences of flavonoids on erythrocyte membrane and metabolic implication through anionic exchange modulation. J Memb Biol 230:163–171CrossRefGoogle Scholar
  4. Beaugè LA, Glynn IM (1979) Occlusion of K ions in the unphosphorylated sodium pump. Nature 280:510–512PubMedCrossRefGoogle Scholar
  5. Bellocci M, Sala GL, Prandi S (2011) The cytolytic and cytotoxic activities of palytoxin. Toxicon 57:449–459PubMedCrossRefGoogle Scholar
  6. Cantley LC, Resh M, Guidotti G (1978) Vanadate inhibits the red cell (Na+/K+)-ATPase from the cytoplasmic side. Nature 272:552–554PubMedCrossRefGoogle Scholar
  7. Chhatwal GS, Hessler HJ, Habermann E (1983) The action of palytoxin on erythrocytes and resealed ghosts. Formation of small, nonselective pores linked with Na+, K+-ATPase. Naunyn Schmiedebergs Arch Pharmacol 323:261–268PubMedCrossRefGoogle Scholar
  8. Ciminiello P, Dell’Aversano C, Fattorusso E, Forino M, Magno S, Tartaglione L, Grillo C, Melchiorre N (2006) The Genoa 2005 outbreak. Determination of putative palytoxin in Mediterranean Ostreopsis ovata by a new liquid chromatography tandem mass spectrometry method. Anal Chem 78:6153–6159PubMedCrossRefGoogle Scholar
  9. dos Remedios CG, Chhabra D, Kekic M, Dedava IV, Tsubakihara M, Berry DA, Nosworthy NJ (2003) Actin binding proteins: regulation of cytoskeleton microfilaments. Physiol Rev 83:433–473PubMedGoogle Scholar
  10. Ficarra S, Tellone E, Giardina B, Scatena R, Russo A, Misiti F, Clementi ME, Colucci D, Bellocco E, Laganà G, Barreca D, Galtieri A (2009) Derangement of erythrocytic AE1 in beta-thalassemia by caspase 3: pathogenic mechanisms and implications in red blood cell senescence. J Membr Biol 228:43–49PubMedCrossRefGoogle Scholar
  11. Frelin C, Van Renterghem C (1995) Palytoxin. Recent electrophysiological and pharmacological evidence for several mechanisms of action. Gen Pharmacol 26:33–37PubMedGoogle Scholar
  12. Gallitelli M, Ungaro N, Addante LM, Silver NG, Sabbà C (2005) Respiratory illness as reaction to tropical algal blooms occurring in a temperate climate. JAMA 293:2599–2600PubMedCrossRefGoogle Scholar
  13. Galtieri A, Tellone E, Romano L, Misiti F, Bellocco E, Ficarra S, Russo A, Di Rosa D, Castagnola M, Giardina B, Messana I (2002) Band-3 protein function in human erythrocytes: effect of oxygenation-deoxygenation. Biochim Biophys Acta 1564:214–218PubMedCrossRefGoogle Scholar
  14. Galtieri A, Tellone E, Ficarra S, Russo A, Bellocco E, Barreca D, Scatena R, Laganà G, Leuzzi U, Giardina B (2010) Resveratrol treatment induces redox stress in red blood cell: a possible role of caspase 3 in metabolism and anion transport. Biol Chem 391:1057–1065PubMedCrossRefGoogle Scholar
  15. Giardina B, Messana I, Scatena R, Castagnola M (1995) The multiple functions of hemoglobin. Crit Rev Biochem Mol Biol 30:165–196PubMedCrossRefGoogle Scholar
  16. Glynn IM (1988) How does the sodium pump pump? In: Gunn RB, Parker JC (eds) Cell physiology of blood. Rockefeller University Press, New York, pp 1–17Google Scholar
  17. Habermann E (1989) Palytoxin acts through Na+, K+-ATPase. Toxicon 27:1171–1197PubMedCrossRefGoogle Scholar
  18. Habermann E, Chhatwal GS (1982) Ouabain inhibits the increase due to palytoxin of cationic permeability of erythrocytes. Naunyn Schmiedebergs Arch Pharmacol 319:101–107PubMedCrossRefGoogle Scholar
  19. Hilgemann DW (2003) From a pump to a pore: how palytoxin opens the gates. Proc Natl Acad Sci USA 100:386–388PubMedCrossRefGoogle Scholar
  20. Hughes FM Jr, Bortner CD, Purdy GD, Cidlowski JA (1997) Intracellular K+ suppresses the activation of apoptosis in lymphocytes. J Biol Chem 272:30567–30576PubMedCrossRefGoogle Scholar
  21. Ikeda M, Mitani K, Ito K (1988) Palytoxin induces a nonselective cation channel in single ventricular cells of rat. Naunyn Schmiedebergs Arch Pharmacol 337:591–593PubMedCrossRefGoogle Scholar
  22. Janoshazi A, Solomon AK (1989) Interaction among anion, cation and glucose transport proteins in the human red cell. J Membr Biol 112:25–37PubMedCrossRefGoogle Scholar
  23. Jin XR, Abe Y, Li CY, Hamasaki N (2003) Histidine-834 of human erythrocyte band 3 has an essential role in the conformational changes that occur during the band 3-mediated anion exchange. Biochemistry 42:12927–12932PubMedCrossRefGoogle Scholar
  24. Kim SY, Wu CH, Bèress L (1991) Palytoxin forms ion channels through Na, K-ATPase. In: De Weer P, Kaplan JH (eds) The sodium pump: recent developments. Rockefeller University Press, New York, pp 505–508Google Scholar
  25. Kim SY, Marx KA, Wu CH (1995) Involvement of the Na,K-ATPase in the induction of ion channels by palytoxin. Naunyn Schmiedebergs Arch Pharmacol 351:542–554PubMedCrossRefGoogle Scholar
  26. Lang F, Busch GL, Ritter M, Volkl H, Waldegger S, Gulbins E, Haussinger D (1998) Functional significance of cell volume regulatory mechanisms. Physiol Rev 78:247–306PubMedGoogle Scholar
  27. Läuger P (1991) Electrogenic ion pumps. Sinauer Associates, SunderlandGoogle Scholar
  28. Lepke S, Fasold H, Pring M, Passow H (1976) A study of the relationship between inhibition of anion exchange and binding to the red cell membrane of 4,4′-diisothiocyanato-stilbene-2,2′-disulfonate (DIDS) and of its dihydroderivative (H2DIDS). J Membr Biol 29:147–177PubMedCrossRefGoogle Scholar
  29. Lewis IA, Campanella ME, Markley JL, Low PS (2009) Role of band 3 in regulating metabolic flux of red blood cells. Proc Natl Acad Sci USA 106:18515–18520PubMedCrossRefGoogle Scholar
  30. Louzao MC, Cadige E, Vieytes MR, Sasaki M, Fuwa H, Yasumoto T, Botana LM (2006) The sodium channel of human excitable cells is a target for gambierdol. Cell Physiol Biochem 17:257–268PubMedCrossRefGoogle Scholar
  31. Louzao MC, Ares IR, Vieytes MR, Valverde I, Vieites JM, Yasumoto T, Botana LM (2007) The cytoskeleton, a structure that is susceptible to the toxic mechanism activated by palytoxins in human excitable cells. FEBS J 274:1991–2004PubMedCrossRefGoogle Scholar
  32. Louzao MC, Ares IR, Cagide E (2008) Marine toxins and the cytoskeleton: a new view of palytoxin toxicity. FEBS J 275:6067–6074PubMedCrossRefGoogle Scholar
  33. Lux SE, Palek J (1995) Disorders of the red cell membrane. In: Handin RI, Lux SE, Stossel TP (eds) Principles and practice of hematology. JB Lippincott, Philadelphia, pp 1701–1818Google Scholar
  34. Maccaglia A, Mallozzi C, Minetti M (2003) Differential effects of quercetin and resveratrol on band 3 tyrosine phosphorylation signalling of red blood cells. Biochem Biophys Res Commun 305:541–547PubMedCrossRefGoogle Scholar
  35. Mandal D, Baudin-Creuza V, Bhattacharyya A, Pathak S, Delaunay J, Kundu M, Basu J (2003) Caspase 3-mediated proteolysis of the N-terminal cytoplasmic domain of the human erythroid anion exchanger 1 (band 3). J Biol Chem 278:52551–52558PubMedCrossRefGoogle Scholar
  36. Misiti F, Orsini F, Clementi ME, Masala D, Tellone E, Galtieri A, Giardina B (2008) Amyloid peptide inhibits ATP release from human erythrocytes. Biochem Cell Biol 86:501–508PubMedCrossRefGoogle Scholar
  37. Moore RE, Scheuer PJ (1971) Palytoxin: a new marine toxin from a coelenterate. Science 172:495–498PubMedCrossRefGoogle Scholar
  38. Moore RE, Bartolini G, Barchi J, Bothmer-By A, Dadok J, Ford J (1982) Absolute stereochemistry of palytoxin. J Am Chem Soc 104:3776–3779CrossRefGoogle Scholar
  39. Muller-Berger S, Karbach D, Kang D, Aranibar N, Wood PG, Ruterjans H, Passow H (1995) Role of histidine 752 and glutamate 699 in pH dependence of mouse band 3 protein-mediated anion transport. Biochemistry 34:9325–9332PubMedCrossRefGoogle Scholar
  40. Muramatsu I, Uemura D, Fujiwara M, Narahashi T (1984) Characteristics of palytoxin-induced depolarization in squid axons. J Pharmacol Exp Ther 231:488–494PubMedGoogle Scholar
  41. Muramatsu I, Nishio M, Kigoshi S, Uemura D (1988) Single ionic channels induced by palytoxin in guinea-pig ventricular myocytes. Br J Pharmacol 93:811–816PubMedGoogle Scholar
  42. Onuma Y, Satake M, Ukena T, Roux J, Chanteau S, Rasolofonirina N, Ratsimaloto M, Naoki H, Yasumoto T (1999) Identification of putative palytoxin as the cause of clupeotoxism. Toxicon 37:55–65PubMedCrossRefGoogle Scholar
  43. Ozaki H, Nagase H, Urakawa N (1985) Interaction of palytoxin and cardiac glycosides on erythrocyte membrane and (Na++ K+) ATPase. Eur J Biochem 152:475–480PubMedCrossRefGoogle Scholar
  44. Passow H (1986) Molecular aspects of band 3 protein-mediated anion transport across the human red blood cell membrane. Rev Physiol Biochem Pharmacol 103:61–223PubMedGoogle Scholar
  45. Rhodes L, Munday R (2004) Palytoxins: a risk to human health? In: Proceedings of the 20th marine biotoxin science workshop, Wellington, New Zealand, New Zealand Food Safety AuthorityGoogle Scholar
  46. Rhodes L, Towers N, Briggs L, Munday R, Adamson J (2002) Uptake of palytoxin-like compounds by shellfish fed Ostreopsis siamensis (Dinophyceae). N Z J Mar Freshw Res 36:631–636CrossRefGoogle Scholar
  47. Romano L, Peritore D, Simone E, Sidoti A, Trischitta F, Romano P (1998) Chloride–sulphate exchange chemically measured in human erythrocyte ghosts. Cell Mol Biol 44:351–355PubMedGoogle Scholar
  48. Romero N, Denicola A, Radi R (2006) Red blood cells in the metabolism of nitric oxide derived peroxinitrite. IUBMB Life 58:575–580CrossRefGoogle Scholar
  49. Russo A, Tellone E, Ficarra S, Giardina B, Bellocco E, Lagana G, Leuzzi U, Kotyk A, Galtieri A (2008) Band 3 protein function in teleost fish erythrocytes: effect of oxygenation–deoxygenation. Physiol Res 57:49–54PubMedGoogle Scholar
  50. Satoh E, Ishii T, Nishimura M (2003) Palytoxin-induced increase in cytosolic-free Ca2+ in mouse spleen cells. Eur J Pharmacol 465:9–13PubMedCrossRefGoogle Scholar
  51. Sauviat MP (1989) Effect of palytoxin on the calcium current and the mechanical activity of frog heart muscle. Br J Pharmacol 98:773–780PubMedGoogle Scholar
  52. Sterling D, Reithmeier RA, Casey JR (2001) A transport metabolon. Functional interaction of carbonic anhydrase II and chloride/bicarbonate exchangers. J Biol Chem 276:47886–478894PubMedGoogle Scholar
  53. Tanner MJ (1997) The structure and function of band 3 (AE1): recent developments. Mol Membr Biol 14:155–165PubMedCrossRefGoogle Scholar
  54. Tellone E, Ficarra S, Giardina B, Scatena R, Russo A, Clementi ME, Misiti F, Bellocco E, Galtieri A (2008) Oxidative effect of gemfibrozil on anion influx and metabolism in normal and beta-thalassaemic erythrocytes: physiological implications. J Membr Biol 224:1–8PubMedCrossRefGoogle Scholar
  55. Tosteson ML, Halperin JA, Kishi Y, Tosteson DC (1991) Palytoxin induces an increase in the cation conductance of red cells. J Gen Physiol 98:969–985PubMedCrossRefGoogle Scholar
  56. Tosteson ML, Scriven DR, Bharadwaj AK, Kishi Y, Tosteson DC (1995) Interaction of palytoxin with red cells: structure–function studies. Toxicon 33:799–807PubMedCrossRefGoogle Scholar
  57. Uemura D, Ueda K, Hirata Y, Iwashita T, Naoki H (1985) Further studies on palytoxin II. Structure of palytoxin. Tetrahedron Lett 22:1007–1017Google Scholar
  58. Vilariño N, Ares IR, Cadige E, Louzao MC, Vievtes MR, Yasumoto T, Botana LM (2008) Induction of actin cytoskeleton rearrangement by methyl okadaate—comparison with okadaic acid. FEBS J 275:926–944PubMedCrossRefGoogle Scholar
  59. Vince JW, Reithmeier RA (2000) Identification of the carbonic anhydrase II binding site in the Cl/HCO3− anion exchanger AE1. Biochemistry 39:5527–5533PubMedCrossRefGoogle Scholar
  60. Wiles JS, Vick JA, Christensen MK (1974) Toxicological evaluation of palytoxin in several animal species. Toxicon 12:427–433PubMedCrossRefGoogle Scholar
  61. Xie Z, Askari A (2002) Na+/K+-ATPase as a signal transducer. Eur J Biochem 269:2434–2439PubMedCrossRefGoogle Scholar
  62. Yagi K, Rastogi R (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Annu Rev Biochem 95:351–358CrossRefGoogle Scholar
  63. Zhang D, Kiyatkin A, Bolin JT, Low PS (2000) Crystallographic structure and functional interpretation of the cytoplasmic domain of erythrocyte membrane band 3. Blood 96:2925–2933PubMedGoogle Scholar
  64. Zijlstra WG, Buursma A, Meeuwsen-Van Der Roest WP (1991) Absorption spectra of human fetal and adult oxyhemoglobin, de-oxyhemoglobin, carboxyhemoglobin and methemoglobin. Clin Chem 37:1633–1638PubMedGoogle Scholar
  65. Zipser Y, Piade A, Barbul A, Korestein R, Kosower NS (2002) Ca2+ promotes erythrocyte band 3 tyrosine phosphorylation via dissociation of phosphotyrosine phosphatase from band 3. Biochem J 368:137–144PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Silvana Ficarra
    • 1
    Email author
  • Annamaria Russo
    • 1
  • Francesca Stefanizzi
    • 2
  • Mario Mileto
    • 3
  • Davide Barreca
    • 1
  • Ersilia Bellocco
    • 1
  • Giuseppina Laganà
    • 1
  • Ugo Leuzzi
    • 1
  • Bruno Giardina
    • 4
    • 5
  • Antonio Galtieri
    • 1
  • Ester Tellone
    • 1
  1. 1.Organic and Biological Chemistry DepartmentUniversity of MessinaMessinaItaly
  2. 2.ARPACAL Regional Agency for Environmental Protection of Calabria, Provincial Department of CrotoneCrotoneItaly
  3. 3.ARPACAL Regional Agency for Environmental Protection of Calabria, Provincial Department of CosenzaCosenzaItaly
  4. 4.Biochemistry and Clinical Biochemistry InstituteCatholic University, School of MedicineRomeItaly
  5. 5.C.N.R. Institute of Chemistry of Molecular RecognitionCatholic UniversityRomeItaly

Personalised recommendations