The Journal of Membrane Biology

, Volume 239, Issue 3, pp 131–135 | Cite as

The Negative Effect of Soy Extract on Erythrocyte Membrane Fluidity: An Electron Paramagnetic Resonance Study

  • Vladimir Ajdžanović
  • Ivan Spasojević
  • Branka Šošić-Jurjević
  • Branko Filipović
  • Svetlana Trifunović
  • Milka Sekulić
  • Verica Milošević


A decrease of erythrocyte membrane fluidity can contribute to the pathophysiology of hypertension. Soy products, which are used as alternative therapeutics in some cardiovascular conditions, contain various isoflavones (genistein, daidzein, and their glucosides, genistin and daidzin), which can incorporate cellular membrane and change its fluidity. The aim of this study was to examine the effects of soy extract (which generally corresponds to the soy products of isoflavone composition) on erythrocyte membrane fluidity at graded depths. We used electron paramagnetic resonance spectroscopy and fatty acid spin probes (5-DS and 12-DS), the spectra of which are dependent on membrane fluidity. After being treated with soy extract, erythrocytes showed a significant (P = 0.016) decrease of membrane fluidity near the hydrophilic surface, while there were no significant changes of fluidity in deeper hydrophobic membrane regions. These results suggest that soy products containing high levels of genistein and isoflavone glucosides may not be suitable for use in hypertension because they decrease erythrocyte membrane fluidity.


Soy extract Isoflavone glucoside Genistein Erythrocytes Electron paramagnetic resonance Membrane fluidity Spin probes 



Supported by the Ministry of Science of the Republic of Serbia (grants 143007B and 143016B).

Conflicts of interest



  1. Ajdžanović V, Spasojević I, Filipović B, Šošić-Jurjević B, Sekulić M, Milošević V (2010) Effects of genistein and daidzein on erythrocyte membrane fluidity: an electron paramagnetic resonance study. Can J Physiol Pharmacol 88:497–500CrossRefPubMedGoogle Scholar
  2. Andlauer W, Kolb J, Fürst P (2004) Phloridzin improves absorption of genistin in isolated rat small intestine. Clin Nutr 23:989–995CrossRefPubMedGoogle Scholar
  3. Anglin TC, Cooper MP, Li H, Chandler K, Conboy JC (2010) Free energy and entropy of activation for phospholipids flip-flop in planar supported lipid bilayers. J Phys Chem B 114:1903–1914CrossRefPubMedGoogle Scholar
  4. Bahri MA, Heyne BJ, Hans P, Seret AE, Mouithys-Mickalad AA, Hoebeke MD (2005) Quantification of lipid bilayer effective microviscosity and fluidity effect induced by propofol. Biophys Chem 114:53–61CrossRefPubMedGoogle Scholar
  5. Bahri MA, Seret AE, Hans P, Piette J, Deby-Dupont G, Hoebeke M (2007) Does propofol alter membrane fluidity at clinically relevant concentrations? An ESR spin label study. Biophys Chem 129:82–91CrossRefPubMedGoogle Scholar
  6. Cassidy A, Hanley B, Lamuela-Raventos RM (2000) Isoflavones, lignans and stilbenes-origins, metabolism and potential importance to human health. J Sci Food Agric 80:1044–1062CrossRefGoogle Scholar
  7. Cooper P, Kudynska J, Buckmaster HA, Kudynski R (1992) An EPR investigation of spin-labelled erythrocytes as a diagnostic technique for malignant hyperthermia. Biochim Biophys Acta 1139:70–76PubMedGoogle Scholar
  8. Crimi E, Ignarro LJ, Napoli C (2007) Microcirculation and oxidative stress. Free Radic Res 41:1364–1375CrossRefPubMedGoogle Scholar
  9. Day AJ, Williamson G (2001) Biomarkers for exposure to dietary flavonoids: a review of the current evidence for identification of quercetin glycosides in plasma. Br J Nutr 86:S105–S110CrossRefPubMedGoogle Scholar
  10. De Lima Toccafondo Vieira M, Ferreira Duarte R, Moreira Campos LM, De Aguiar Nunan E (2008) Comparison of the estrogenic potencies of standardized soy extracts by immature rat uterothropic bioassay. Phytomedicine 15:31–37CrossRefPubMedGoogle Scholar
  11. Doerge D, Sheehan D (2002) Goitrogenic and estrogenic activity of soy isoflavones. Environ Health Perspect 110:349–353CrossRefPubMedGoogle Scholar
  12. Gaffney BJ (1976) Practical considerations for the calculation of order parameters for fatty acids or phospholipid spin labels in membranes. In: Berliner LJ (ed) Spin labeling: theory and applications. Academic, New York, pp 567–571Google Scholar
  13. Grammenos A, Bahri MA, Guelluy PH, Piel G, Hoebeke M (2009) Quantification of randomly-methylated-β-cyclodextrin effects on liposome. An ESR study. Biochem Biophys Res Commun 390:5–9CrossRefPubMedGoogle Scholar
  14. Kritz H, Underwood SR, Sinzinger H (1996) Imaging of atherosclerosis (part I). Wien Klin Wochenschr 108:87–97PubMedGoogle Scholar
  15. Kruk I, Aboul-Enein HY, Michalska T, Lichszteld K, Kladna A (2005) Scavenging of reactive oxygen species by the plant phenols genistein and oleuropein. Luminescence 20:81–89CrossRefPubMedGoogle Scholar
  16. Mitchell JH, Gardner PT, Mcphail DB, Morrice ARC, Duthie GG (1998) Antioxidant efficacy of phytoestrogens in chemical and biological model systems. Arch Biochem Biophys 360:142–148CrossRefPubMedGoogle Scholar
  17. Orlov SN, Gulak PV, Litvinov IS, Postnov YV (1982) Evidence of altered structure of the erythrocyte membrane in spontaneously hypertensive rats. Clin Sci (Lond) 63:43–45Google Scholar
  18. Postnov YV, Orlov SN (1984) Cell membrane alteration as a source of primary hypertension. J Hypertens 2:1–6CrossRefPubMedGoogle Scholar
  19. Raines EW, Ross R (1995) Biology of atherosclerotic plaque formation: possible role of growth factors in lesion development and the potential impact of soy. J Nutr 125:624S–630SPubMedGoogle Scholar
  20. Scalbert A, Williamson G (2000) Dietary intake and bioavailability of polyphenols. J Nutr 130:2073S–2085SPubMedGoogle Scholar
  21. Setchell KDR (1985) Naturally occurring non-steroidal estrogens of dietary origin. In: McLachlan J (ed) Estrogens in the environment: influence on development. Elsevier, New York, pp 69–85Google Scholar
  22. Shimizu K, Maitani Y, Takayama K, Nagai T (1996) Characterization of dipalmitoylphosphatidylcholine liposomes containing a soybean-derived sterylglucoside mixture by differential scanning calorimetry, Fourier transform infrared spectroscopy, and enzymatic assay. J Pharm Sci 85:741–744CrossRefPubMedGoogle Scholar
  23. Spasojević I, Maksimović V, Zakrzewska J, Bačić G (2005) Effects of 5-fluorouracil on erythrocytes in relation to its cardiotoxicity: membrane structure and functioning. J Chem Inf Model 45:1680–1685CrossRefPubMedGoogle Scholar
  24. Tsuda K, Iwahashi H, Minatogawa Y, Nishio I, Kido R, Masuyama Y (1987) Electron spin resonance studies of erythrocytes from spontaneously hypertensive rats and humans with essential hypertension. Hypertension 9:III19–III24PubMedGoogle Scholar
  25. van Meer G, Holthuis JCM (2000) Sphingolipid transport in eukaryotic cells. Biochim Biophys Acta Mol Cell Biol Lipid 1486:145–170Google Scholar
  26. Zicha J, Kunes J, Devynck MA (1999) Abnormalities of membrane function and lipid metabolism in hypertension. Am J Hypertens 12:315–331CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Vladimir Ajdžanović
    • 1
  • Ivan Spasojević
    • 2
  • Branka Šošić-Jurjević
    • 1
  • Branko Filipović
    • 1
  • Svetlana Trifunović
    • 1
  • Milka Sekulić
    • 1
  • Verica Milošević
    • 1
  1. 1.Department of Cytology, Institute for Biological Research “Siniša Stanković”University of BelgradeBelgradeSerbia
  2. 2.Life Systems Department, Institute for Multidisciplinary ResearchUniversity of BelgradeBelgradeSerbia

Personalised recommendations