The Journal of Membrane Biology

, Volume 239, Issue 1–2, pp 73–84 | Cite as

Water Pathways in the Bacteriorhodopsin Proton Pump



Internal water molecules play key roles in the functioning of the light-driven bacteriorhodopsin proton pump. Of particular importance is whether during the proton-pumping cycle the critical water molecule w402 can relocate from the extracellular to the cytoplasmic side of the retinal Schiff base. Here, classical mechanical and combined quantum mechanical/molecular mechanical reaction path computations are performed to investigate pathways and energetic factors influencing w402 relocation. Hydrogen bonding between w402 and the negatively charged Asp85 and Asp212 largely opposes repositioning of the water molecule. In contrast, favorable contributions from hydrogen bonding of w402 with the Schiff base and Thr89 and from the untwisting of the retinal polyene chain lower the energetic cost for water relocation. The delicate balance between the competing contributions underlies the need for highly accurate calculations and structural information.


Water Proton transfer Bacteriorhodopsin QM/MM Reaction path computation 


  1. Bajaj VS, Mak-Jurkauskas ML, Belenky M, Herzfeld J, Griffin RG (2009) Functional and shunt states of bacteriorhodopsin resolved by 250 GHz dynamic nuclear polarization-enhanced solid-state NMR. Proc Natl Acad Sci USA 106:9244–9249CrossRefPubMedGoogle Scholar
  2. Baudry J, Tajkhorshid E, Molnar E, Phillips J, Schulten K (2001) Molecular dynamics study of bacteriorhodopsin and the purple membrane. J Phys Chem B 105:905–918CrossRefGoogle Scholar
  3. Belrhali H, Nollert P, Royant A, Menzel C, Rosenbuch JP, Landau EM, Pebay-Peyroula E (1999) Protein, lipid and water organization in bacteriorhodopsin crystals: a molecular view of the purple membrane at 1.9 Å resolution. Structure 7:909–917CrossRefPubMedGoogle Scholar
  4. Bondar AN, Smith JC (2009) Water molecules in short- and long-distance proton transfer steps of bacteriorhodopsin proton pumping. Isr J Chem 48:155–161CrossRefGoogle Scholar
  5. Bondar AN, Elstner M, Suhai S, Smith JC, Fischer S (2004a) Mechanism of primary proton transfer in bacteriorhodopsin. Structure 12:1281–1288CrossRefPubMedGoogle Scholar
  6. Bondar AN, Fischer S, Smith JC, Elstner M, Suhai S (2004b) Key role of electrostatic interactions in bacteriorhodopsin proton transfer. J Am Chem Soc 126:14668–14677CrossRefPubMedGoogle Scholar
  7. Bondar AN, Smith JC, Fischer S (2006) Structural and energetic determinants of primary proton transfer in bacteriorhodopsin. Photochem Photobiol Sci 5:547–552CrossRefPubMedGoogle Scholar
  8. Bondar AN, Suhai S, Fischer S, Smith JC, Elstner M (2007) Suppression of the back proton-transfer from Asp85 to the retinal Schiff base in bacteriorhodopsin: a theoretical analysis of structural elements. J Struct Biol 157:454–469CrossRefPubMedGoogle Scholar
  9. Bondar AN, Baudry J, Suhai S, Fischer S, Smith JC (2008) Key role of water molecules in bacteriorhodopsin proton transfer reactions. J Phys Chem B 112:14729–14741CrossRefPubMedGoogle Scholar
  10. Bondar AN, Smith JC, Elstner M (2010) Mechanism of a proton pump analyzed with computer simulations. Theor Chem Acc 125:353–363CrossRefGoogle Scholar
  11. Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M (1983) CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J Comput Chem 4:187–217CrossRefGoogle Scholar
  12. Brown LS, Sasaki J, Kandori H, Maeda A, Needleman R, Lanyi JK (1995) Glutamic acid 204 is the terminal proton release group at the extracellular surface of bacteriorhodopsin. J Biol Chem 270:27122–27126CrossRefPubMedGoogle Scholar
  13. Bullough PA, Henderson R (1999) The projection structure of the low temperature K intermediate of the bacteriorhodopsin photocycle determined by electron diffraction. J Mol Biol 286:1663–1671CrossRefPubMedGoogle Scholar
  14. Camello C, Pariente JA, Salido GM, Camello PJ (2000) Role of proton gradients and vacuolar H+-ATPases in the refilling of intracellular calcium stores in exocrine cells. Curr Biol 10:161–164CrossRefPubMedGoogle Scholar
  15. Choi C, Elber R (1991) Reaction path study of helix formation in tetrapeptides: effect of sidechains. J Chem Phys 94:751–760CrossRefGoogle Scholar
  16. Cui Q, Elstner M, Kaxiras E, Frauenheim T, Karplus M (2001) A QM/MM implementation of the self-consistent charge density functional tight binding (SCC-DFTB) method. J Phys Chem B 105:569–585CrossRefGoogle Scholar
  17. Dioumaev A, Richter H-T, Brown LS, Tanio M, Tuzi S, Saito H, Kimura Y, Needleman R, Lanyi JK (1998) Existence of a proton transfer chain in bacteriorhodopsin: participation of Glu-194 in the release of protons to the extracellular surface. Biochem 37:2496–2506CrossRefGoogle Scholar
  18. Edman K, Nollert P, Royant A, Belrhali H, Pebay-Peyroula E, Hajdu J, Neutze R, Landau EM (1999) High-resolution X-ray structure of an early intermediate in the bacteriorhodopsin photocycle. Nature 401:822–826CrossRefPubMedGoogle Scholar
  19. Edman K, Royant A, Larsson G, Jacobson F, Taylor T, van der Spoel D, Landau EM, Pebay-Peyroula E, Neutze R (2004) Deformation of helix C in the low temperature L-intermediate of bacteriorhodopsin. J Biol Chem 279:2147–2158CrossRefPubMedGoogle Scholar
  20. Elstner M, Porezag D, Jungnickel G, Elsner J, Haugk M, Frauenheim T, Suhai S, Seifert G (1998) Self-consistent-charge-density-functional tight-binding method for simulations of complex material properties. Phys Rev B 58:7260–7268CrossRefGoogle Scholar
  21. Essen LO, Siegert R, Lehman WD, Oesterhelt D (1998) Lipid patches in membrane protein oligomers: crystal structure of the bacteriorhodopsin–lipid complex. Proc Natl Acad Sci USA 95:11673–11678CrossRefPubMedGoogle Scholar
  22. Field MJ, Bash PA, Karplus M (1990) A combined quantum mechanical and molecular mechanical potential for molecular dynamics. J Comput Chem 11:700–733CrossRefGoogle Scholar
  23. Fischer S, Karplus M (1992) Conjugate peak refinement: an algorithm for finding reaction paths and accurate transition states in systems with many degrees of freedom. Chem Phys Lett 194:252–261CrossRefGoogle Scholar
  24. Garczarek F, Gerwert K (2006) Functional waters in intraprotein proton transfer monitored by FTIR difference spectroscopy. Nature 439:109–112CrossRefPubMedGoogle Scholar
  25. Garczarek F, Brown LS, Lanyi JK, Gerwert K (2005) Proton binding within a membrane protein by a protonated water cluster. Proc Natl Acad Sci USA 102:3633–3638CrossRefPubMedGoogle Scholar
  26. Gat Y, Sheves M (1993) A mechanism for controlling the pKa of the retinal protonated Schiff base in retinal proteins. A study with model compounds. J Am Chem Soc 115:3772–3773CrossRefGoogle Scholar
  27. Grudinin S, Büldt G, Gordeliy V, Baumgartner A (2005) Water molecules and hydrogen-bonded networks in bacteriorhodopsin—molecular dynamics simulations of the ground state and the M-intermediate. Biophys J 88:3252–3261CrossRefPubMedGoogle Scholar
  28. Hayashi S, Ohmine I (2000) Proton transfer in bacteriorhodopsin: structure, excitation, IR spectra, and potential energy surface analyses by an ab initio QM/MM method. J Phys Chem B 104:10678–10691CrossRefGoogle Scholar
  29. Hendrikson FM, Burkard F, Glaeser RM (1998) Structural characterization of the L-to-M transition of the bacteriorhodopsin photocycle. Biophys J 75:1446–1454CrossRefGoogle Scholar
  30. Herzfeld J, Lansing JC (2002) Magnetic resonance studies of the bacteriorhodopsin pump cycle. Annu Rev Biophys Biomol Struct 31:73–95CrossRefPubMedGoogle Scholar
  31. Hildebrandt P, Stockburger M (1984) Role of water in bacteriorhodopsin’s chromophore: resonance Raman study. Biochem 23:5539–5548CrossRefGoogle Scholar
  32. Jardón-Valadez E, Bondar AN, Tobias DJ (2010) Coupling of retinal, protein, and water dynamics in squid rhodopsin. Biophys J 99:2200–2207CrossRefPubMedGoogle Scholar
  33. Jorgensen W, Chandrasekhar J, Madura J, Impey R, Klein M (1983) Comparison of simple potentials for simulation of liquid water. J Comp Chem 79:926–935Google Scholar
  34. Kalaidzidis IV, Belevich IN, Kaulen AD (1998) Photovoltage evidence that Glu-204 is the intermediate proton donor rather than the terminal proton release group in bacteriorhodopsin. FEBS Lett 434:197–200CrossRefPubMedGoogle Scholar
  35. Kandori H (2004) Hydration switch model for the proton transfer in the Schiff base region of bacteriorhodopsin. Biochim Biophys Acta 1658:72–79CrossRefPubMedGoogle Scholar
  36. Kouyama T, Nishikawa T, Tokuhisa T, Okumura H (2004) Crystal structure of the L intermediate of bacteriorhodopsin: evidence for vertical translocation of a water molecule during the proton pumping cycle. J Mol Biol 335:531–546CrossRefPubMedGoogle Scholar
  37. Lanyi JK, Schobert B (2002) Crystallographic structure of the retinal and the protein after deprotonation of the Schiff base: the switch in the bacteriorhodopsin photocycle. J Mol Biol 321:727–737CrossRefPubMedGoogle Scholar
  38. Lanyi JK, Schobert B (2003) Mechanism of proton transport in bacteriorhodopsin from crystallographic structures of the K, L, M1, M2, and M2 intermediates of the photocycle. J Mol Biol 328:439–450CrossRefPubMedGoogle Scholar
  39. Lanyi JK, Schobert B (2007) Structural changes in the L photointermediate of bacteriorhodopsin. J Mol Biol 365:1379–1392CrossRefPubMedGoogle Scholar
  40. Luecke H (2000) Atomic resolution structures of bacteriorhodopsin photocycle intermediates: the role of discrete water molecules in the function of this light-driven ion pump. Biochim Biophys Acta 1460:133–156CrossRefPubMedGoogle Scholar
  41. Luecke H, Schobert B, Richter HT, Cartailler JP, Lanyi JK (1999) Structure of bacteriorhodospin at 1.55 Å resolution. J Mol Biol 291:899–911CrossRefPubMedGoogle Scholar
  42. Luecke H, Schobert B, Cartailler HTR, Rosengarth A, Needleman R, Janyi JK (2000) Coupling photoisomerization of retinal to directional transport in bacteriorhodopsin. J Mol Biol 300:1237–1255CrossRefPubMedGoogle Scholar
  43. MacKerell AD Jr, Bashford D, Bellott RL, Dunbrack RL Jr, Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph-McCarthy D, Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S, Ngo T, Nguyen DT, Prodhom B, Reiher WE III, Roux B, Schlenkrich M, Smith JC, Stote R, Straub J, Watanabe M, Wiorkiewicz-Kuczera J, Yin D, Karplus M (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102:3586–3616CrossRefGoogle Scholar
  44. Maeda A, Herzfeld J, Belenky M, Needleman R, Gennis RB, Balashov SP, Ebrey TG (2003) Water-mediated hydrogen-bonded network on the cytoplasmic side of the Schiff base of the L photointermediate of bacteriorhodopsin. Biochemistry 42:14122–14129CrossRefPubMedGoogle Scholar
  45. Mak-Jurkauskas ML, Bajaj VS, Hornstein MK, Belenky M, Griffin RG, Herzfeld J (2008) Energy transformations early in the bacteriorhodopsin photocycle revealed by DNP-enhanced solid-state NMR. Proc Natl Acad Sci USA 105:883–888CrossRefPubMedGoogle Scholar
  46. Matsui Y, Sakai K, Murakami M, Shiro Y, Adachi S, Okumura H, Kouyama T (2002) Specific damage induced by X-ray radiation and structural changes in the primary photoreaction of bacteriorhodopsin. J Mol Biol 324:469–481CrossRefPubMedGoogle Scholar
  47. Mefford IN, Wade EU (2009) Proton pump inhibitors as a treatment method for type II diabetes. Med Hypotheses 73:29–32CrossRefPubMedGoogle Scholar
  48. Mellman I (1992) The importance of being acid: the role of acidification in intracellular membrane traffic. J Exp Biol 172:39–45PubMedGoogle Scholar
  49. Metz G, Siebert F, Engelhard M (1992) Asp85 is the only internal aspartic acid that gets protonated in the M intermediate and the purple-to-blue transition of bacteriorhodopsin. A solid-state and 13C CP-MAS NMR investigation. FEBS Lett 303:237–241CrossRefPubMedGoogle Scholar
  50. Mullin JM, Gabello M, Murray LJ, Farrel CP, Bellows J, Wolov KR, Kearney KR, Rudolph D, Thornton JJ (2009) Proton pump inhibitors: actions and reactions. Drug Discov Today 14:647–660CrossRefPubMedGoogle Scholar
  51. Murata K, Fuji Y, Enomoto N, Hata M, Hoshino T, Tsuda M (2000) A study on the mechanism of the proton transport in bacteriorhodopsin: the importance of the water molecule. Biophys J 79:982–991CrossRefPubMedGoogle Scholar
  52. Neria E, Fischer S, Karplus M (1996) Simulation of activation free energies in molecular systems. J Chem Phys 105:1902–1921CrossRefGoogle Scholar
  53. Nina M, Roux B, Smith JC (1995) Functional interactions in bacteriorhodopsin: a theoretical analysis of retinal hydrogen bonding with water. Biophys J 68:25–39CrossRefPubMedGoogle Scholar
  54. Phatak P, Ghosh N, Yu H, Cui Q, Elstner M (2008) Amino acids with an intermolecular proton bond as proton storage site in bacteriorhodopsin. Proc Natl Acad Sci USA 105:19672–19677CrossRefPubMedGoogle Scholar
  55. Phatak P, Frähmke JS, Wanko M, Hoffmann M, Strudel P, Smith JC, Suhai S, Bondar AN, Elstner M (2009) Long-distance proton transfer with a break in the bacteriorhodopsin active site. J Am Chem Soc 131:7064–7078CrossRefPubMedGoogle Scholar
  56. Roux B, Nina M, Pomès R, Smith JC (1996) Thermodynamic stability of water molecules in the bacteriorhodopsin proton channel: a molecular dynamics free energy perturbation study. Biophys J 71:670–681CrossRefPubMedGoogle Scholar
  57. Royant A, Edman K, Ursby T, Pebay-Peyroula E, Landau EM, Neutze R (2000) Helix deformation is coupled to vectorial proton transport in the photocycle of bacteriorhodopsin. Nature 406:645–648CrossRefPubMedGoogle Scholar
  58. Sass H, Büldt G, Gessenich R, Hehn D, Neff D, Schlesinger R, Berendzen J, Ormos P (2000) Structural alterations for proton translocation in the M state of wild-type bacteriorhdopsin. Nature 406:649–653CrossRefPubMedGoogle Scholar
  59. Schobert B, Cupp-Vickery J, Hornak V, Smith SO, Lanyi JK (2002) Crystallographic structure of the K intermediate of bacteriorhodopsin: conservation of free energy after photoisomerization of the retinal. J Mol Biol 321:715–726CrossRefPubMedGoogle Scholar
  60. Singh UC, Kollman P (1986) A combined ab initio quantum mechanical and molecular mechanical method for carrying out simulations on complex molecular systems: applications to the CH3Cl + Cl exchange reaction and gas phase protonation of polyethers. J Comput Chem 7:718–730CrossRefGoogle Scholar
  61. Subramaniam S, Lindahl M, Bullough P, Faruki AR, Tittor J, Oesterhelt D, Brown L, Lanyi JK, Henderson R (1999) Protein conformational changes in the bacteriorhodopsin photocycle. J Mol Biol 287:145–161CrossRefPubMedGoogle Scholar
  62. Warshel A (1991) Computer modeling of chemical reactions in enzymes and solutions. John Wiley & Sons, New YorkGoogle Scholar
  63. Wiener MC, White SH (1992) Structure of a fluid dioleoylphosphatidylcholine bilayer determined by joint refinement of x-ray and neutron diffraction data. III. Complete structure. Biophys J 61:434–447CrossRefPubMedGoogle Scholar
  64. Zhou H, Tajkhorshid E, Frauenheim T, Suhai S, Elstner M (2002) Performance of the AM1, PM3, and SCC-DFTB methods in the study of conjugated Schiff base models. Chem Phys 277:91–103CrossRefGoogle Scholar
  65. Zscherp C, Schlesinger R, Tittor J, Oesterhelt D, Heberle J (1999) In situ determination of transient pKa changes of internal amino acids of bacteriorhodopsin by using time-resolved attenuated total reflection Fourier-transform infrared spectroscopy. Proc Natl Acad Sci USA 96:5498–5503CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Physiology and Biophysics, Medical Science IUniversity of California at IrvineIrvineUSA
  2. 2.Computational Molecular Biophysics, IWRUniversity of HeidelbergHeidelbergGermany
  3. 3.Molecular Biophysics DepartmentGerman Cancer Research CenterHeidelbergGermany
  4. 4.Computational Biochemistry IWRUniversity of HeidelbergHeidelbergGermany
  5. 5.University of Tennessee/Oak Ridge National Laboratory Center for Molecular BiophysicsOak RidgeUSA
  6. 6.Department of PhysicsFreie Universität BerlinBerlinGermany

Personalised recommendations