Advertisement

The Journal of Membrane Biology

, Volume 237, Issue 1, pp 13–19 | Cite as

Palmitic Acid Induces the Opening of a Ca2+-Dependent Pore in the Plasma Membrane of Red Blood Cells: The Possible Role of the Pore in Erythrocyte Lysis

  • Konstantin N. BelosludtsevEmail author
  • Alexander S. Trudovishnikov
  • Natalia V. Belosludtseva
  • Alexey V. Agafonov
  • Galina D. Mironova
Article

Abstract

Earlier we found that in the presence of Ca2+ palmitic acid (Pal) increases the nonspecific permeability of artificial (planar and liposomal) membranes and causes permeabilization of the inner mitochondrial membrane. An assumption was made that the mechanism of Pal/Ca2+-induced membrane permeabilization relates to the Ca2+-induced phase separation of Pal and can be considered as formation of fast-tightening lipid pores due to chemotropic phase transition in the lipid bilayer. In this article, we continue studying this pore. We have found that Pal plus Ca2+ permeabilize the plasma membrane of red blood cells in a dose-dependent manner. The same picture has been revealed for stearic acid (20 μM) but not for myristic and linoleic acids. The Pal-induced permeabilization of erythrocytic membranes can also occur in the presence of Ba2+ and Mn2+ (200 μM), but other bivalent cations (200 μM Mg2+, Sr2+, Ni2+, Co2+) are relatively ineffective. The formation of Pal/Ca2+-induced pores in the erythrocytic membranes has been found to result in the destruction of cells.

Keywords

Palmitic acid Calcium Lipid pore Erythrocyte 

Abbreviations

Pal

Palmitic acid

FFA

Free fatty acids

SRB

Sulforhodamine B

Notes

Acknowledgements

We are grateful to Dr. Natalia Venediktova (Institute of Theoretical and Experimental Biophysics RAS, Russia) for technical assistance in the preparation of SRB-loaded erythrocytes. This work was supported by a grant from the Russian Foundation for Basic Research, to K. N. B. (09-04-01024a), and the program Development of High School Scientific Potential from the Russian Ministry for Education, to G. D. M. (3840).

References

  1. Abe M, Sevanian A (1981) The effect of oxygen exposure on erythrocyte phospholipid composition. Tohoku J Exp Med 135:205–211CrossRefPubMedGoogle Scholar
  2. Agafonov A, Gritsenko E, Belosludtsev K et al (2003) A permeability transition in liposomes induced by the formation of Ca2+/palmitic acid complexes. Biochim Biophys Acta 1609:153–160CrossRefPubMedGoogle Scholar
  3. Agafonov AV, Gritsenko EN, Shlyapnikova EN et al (2007) Ca2+-induced phase separation in the membrane of palmitate-containing liposomes and its possible relation to membrane permeabilization. J Membr Biol 215:57–68CrossRefPubMedGoogle Scholar
  4. Belosludtsev KN, Belosludtseva NV, Mironova GD (2005) Possible mechanism for formation and regulation of the palmitate-induced cyclosporin A-insensitive mitochondrial pore. Biochemistry 70:815–821PubMedGoogle Scholar
  5. Belosludtsev KN, Saris N-EL, Andersson LC et al (2006) On the mechanism of palmitic acid-induced apoptosis: the role of a pore induced by palmitic acid and Ca2+ in mitochondria. J Bioenerg Biomembr 38:113–120CrossRefPubMedGoogle Scholar
  6. Belosludtsev KN, Saris NE, Belosludtseva NV et al (2009) Physiological aspects of the mitochondrial cyclosporin A-insensitive palmitate/Ca2+-induced pore: tissue specificity, age profile and dependence on the animal’s adaptation to hypoxia. J Bioenerg Biomembr 41:395–401CrossRefPubMedGoogle Scholar
  7. Belosludtseva NV, Belosludtsev KN, Agafonov AV, Mironova GD (2009) Effect of cholesterol on the formation of palmitate/Ca2+-activated pore in mitochondria and liposomes [in Russian]. Biofizika 54:464–470PubMedGoogle Scholar
  8. Brustovetsky NN, Amerkanov ZG, Yegorova ME et al (1990) Carboxyatractylate-sensitive uncoupling in liver mitochondria from ground squirrels during hibernation and arousal. FEBS Lett 272:190–192CrossRefPubMedGoogle Scholar
  9. Galla HJ, Luisetti J (1980) Lateral and transversal diffusion and phase transitions in erythrocyte membranes. An excimer fluorescence study. Biochim Biophys Acta 596:108–117CrossRefPubMedGoogle Scholar
  10. Gordon LM, Mobley PW (1984) Thermotropic lipid phase separations in human erythrocyte ghosts and cholesterol-enriched rat liver plasma membranes. J Membr Biol 79:75–86CrossRefPubMedGoogle Scholar
  11. Ihler GM, Tsang HC (1987) Hypotonic hemolysis methods for entrapment of agents in resealed erythrocytes. Methods Enzymol 149:221–229CrossRefPubMedGoogle Scholar
  12. Kaler GV, Rachkovskii LI, Konev SV (1986) Intercellular interactions as a reason for the influence of the erythrocyte concentration on the parameters of detergent hemolysis [in Russian]. Tsitologiia 28:964–969PubMedGoogle Scholar
  13. Kenno KA, Severson DL (1985) Lipolysis in isolated myocardial cells from diabetic rat hearts. Am J Physiol Heart Circ Physiol 249:H1024–H1030Google Scholar
  14. Koumanov KS, Tessier C, Momchilova AB et al (2005) Comparative lipid analysis and structure of detergent-resistant membrane raft fractions isolated from human and ruminant erythrocytes. Arch Biochem Biophys 434:150–158CrossRefPubMedGoogle Scholar
  15. Laposata EA, Lange LG (1986) Presence of nonoxidative ethanol metabolism in human organs commonly damaged by ethanol abuse. Science 231:497–499CrossRefPubMedGoogle Scholar
  16. Lee NM, Brady CW (2009) Liver disease in pregnancy. World J Gastroenterol 15:897–906CrossRefPubMedGoogle Scholar
  17. Leidl K, Liebisch G, Richter D, Schmitz G (2008) Mass spectrometric analysis of lipid species of human circulating blood cells. Biochim Biophys Acta 1781:655–664PubMedGoogle Scholar
  18. Mironova GD, Gateau-Roesch O, Levrat C et al (2001) Palmitic and stearic acids bind Ca2+ with high affinity and form nonspecific channels in black-lipid membranes. Possible relation to Ca2+-activated mitochondrial pores. J Bioenerg Biomembr 33:319–331CrossRefPubMedGoogle Scholar
  19. Mironova GD, Gritsenko E, Gateau-Roesch O et al (2004) Formation of palmitic acid/Ca2+ complexes in the mitochondrial membrane: a possible role in the cyclosporin-insensitive permeability transition. J Bioenerg Biomembr 36:171–178CrossRefPubMedGoogle Scholar
  20. Mironova GD, Belosludtsev KN, Belosludtseva NV et al (2007) Mitochondrial Ca2+ cycle mediated by the palmitate-activated cyclosporin A-insensitive pore. J Bioenerg Biomembr 39:167–174CrossRefPubMedGoogle Scholar
  21. Mohandas N, Gallagher PG (2008) Red cell membrane: past, present, and future. Blood 112:3939–3948CrossRefPubMedGoogle Scholar
  22. Schönfeld P, Struy H (1999) Refsum disease diagnostic marker phytanic acid alters the physical state of membrane proteins of liver mitochondria. FEBS Lett 457:179–183CrossRefPubMedGoogle Scholar
  23. Schwarz G, Arbuzova A (1995) Pore kinetics reflected in the dequenching of a lipid vesicle entrapped fluorescent dye. Biochim Biophys Acta 1239:51–57CrossRefPubMedGoogle Scholar
  24. Shimabukuro M, Zhou Y, Levi M, Unger R (1998) Fatty acid-induced beta cell apoptosis: a link between obesity and diabetes. Proc Natl Acad Sci USA 95:2498–2502CrossRefPubMedGoogle Scholar
  25. Sparagna G, Hickson-Bick D, Buja L, McMillin J (2000) A metabolic role for mitochondria in palmitate-induced cardiac myocyte apoptosis. Am J Physiol Heart Circ Physiol 279:2124–2132Google Scholar
  26. Sultan A, Sokolove P (2001) Palmitic acid opens a novel cyclosporin A-insensitive pore in the inner mitochondrial membrane. Arch Biochem Biophys 386:31–51Google Scholar
  27. Wrońska-Nofer T, Rosin J, Bartosz G (1991) Interaction of ethanol and xylene in their effects on erythrocytes and other haematological parameters in the rat. J Appl Toxicol 11:289–292CrossRefPubMedGoogle Scholar
  28. Zavodnik IB, Piletskaia TP, Stepuro II (1991) The effect of temperature on lysis of human erythrocytes by palmitic acid [in Russian]. Biofizika 36:1056–1060PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Konstantin N. Belosludtsev
    • 1
    Email author
  • Alexander S. Trudovishnikov
    • 1
  • Natalia V. Belosludtseva
    • 1
    • 2
  • Alexey V. Agafonov
    • 1
    • 2
  • Galina D. Mironova
    • 1
    • 2
  1. 1.Institute of Theoretical and Experimental Biophysics RASMoscow RegionRussia
  2. 2.Pushchino State UniversityMoscow RegionRussia

Personalised recommendations