The Journal of Membrane Biology

, Volume 237, Issue 1, pp 13–19 | Cite as

Palmitic Acid Induces the Opening of a Ca2+-Dependent Pore in the Plasma Membrane of Red Blood Cells: The Possible Role of the Pore in Erythrocyte Lysis

  • Konstantin N. BelosludtsevEmail author
  • Alexander S. Trudovishnikov
  • Natalia V. Belosludtseva
  • Alexey V. Agafonov
  • Galina D. Mironova


Earlier we found that in the presence of Ca2+ palmitic acid (Pal) increases the nonspecific permeability of artificial (planar and liposomal) membranes and causes permeabilization of the inner mitochondrial membrane. An assumption was made that the mechanism of Pal/Ca2+-induced membrane permeabilization relates to the Ca2+-induced phase separation of Pal and can be considered as formation of fast-tightening lipid pores due to chemotropic phase transition in the lipid bilayer. In this article, we continue studying this pore. We have found that Pal plus Ca2+ permeabilize the plasma membrane of red blood cells in a dose-dependent manner. The same picture has been revealed for stearic acid (20 μM) but not for myristic and linoleic acids. The Pal-induced permeabilization of erythrocytic membranes can also occur in the presence of Ba2+ and Mn2+ (200 μM), but other bivalent cations (200 μM Mg2+, Sr2+, Ni2+, Co2+) are relatively ineffective. The formation of Pal/Ca2+-induced pores in the erythrocytic membranes has been found to result in the destruction of cells.


Palmitic acid Calcium Lipid pore Erythrocyte 



Palmitic acid


Free fatty acids


Sulforhodamine B



We are grateful to Dr. Natalia Venediktova (Institute of Theoretical and Experimental Biophysics RAS, Russia) for technical assistance in the preparation of SRB-loaded erythrocytes. This work was supported by a grant from the Russian Foundation for Basic Research, to K. N. B. (09-04-01024a), and the program Development of High School Scientific Potential from the Russian Ministry for Education, to G. D. M. (3840).


  1. Abe M, Sevanian A (1981) The effect of oxygen exposure on erythrocyte phospholipid composition. Tohoku J Exp Med 135:205–211CrossRefPubMedGoogle Scholar
  2. Agafonov A, Gritsenko E, Belosludtsev K et al (2003) A permeability transition in liposomes induced by the formation of Ca2+/palmitic acid complexes. Biochim Biophys Acta 1609:153–160CrossRefPubMedGoogle Scholar
  3. Agafonov AV, Gritsenko EN, Shlyapnikova EN et al (2007) Ca2+-induced phase separation in the membrane of palmitate-containing liposomes and its possible relation to membrane permeabilization. J Membr Biol 215:57–68CrossRefPubMedGoogle Scholar
  4. Belosludtsev KN, Belosludtseva NV, Mironova GD (2005) Possible mechanism for formation and regulation of the palmitate-induced cyclosporin A-insensitive mitochondrial pore. Biochemistry 70:815–821PubMedGoogle Scholar
  5. Belosludtsev KN, Saris N-EL, Andersson LC et al (2006) On the mechanism of palmitic acid-induced apoptosis: the role of a pore induced by palmitic acid and Ca2+ in mitochondria. J Bioenerg Biomembr 38:113–120CrossRefPubMedGoogle Scholar
  6. Belosludtsev KN, Saris NE, Belosludtseva NV et al (2009) Physiological aspects of the mitochondrial cyclosporin A-insensitive palmitate/Ca2+-induced pore: tissue specificity, age profile and dependence on the animal’s adaptation to hypoxia. J Bioenerg Biomembr 41:395–401CrossRefPubMedGoogle Scholar
  7. Belosludtseva NV, Belosludtsev KN, Agafonov AV, Mironova GD (2009) Effect of cholesterol on the formation of palmitate/Ca2+-activated pore in mitochondria and liposomes [in Russian]. Biofizika 54:464–470PubMedGoogle Scholar
  8. Brustovetsky NN, Amerkanov ZG, Yegorova ME et al (1990) Carboxyatractylate-sensitive uncoupling in liver mitochondria from ground squirrels during hibernation and arousal. FEBS Lett 272:190–192CrossRefPubMedGoogle Scholar
  9. Galla HJ, Luisetti J (1980) Lateral and transversal diffusion and phase transitions in erythrocyte membranes. An excimer fluorescence study. Biochim Biophys Acta 596:108–117CrossRefPubMedGoogle Scholar
  10. Gordon LM, Mobley PW (1984) Thermotropic lipid phase separations in human erythrocyte ghosts and cholesterol-enriched rat liver plasma membranes. J Membr Biol 79:75–86CrossRefPubMedGoogle Scholar
  11. Ihler GM, Tsang HC (1987) Hypotonic hemolysis methods for entrapment of agents in resealed erythrocytes. Methods Enzymol 149:221–229CrossRefPubMedGoogle Scholar
  12. Kaler GV, Rachkovskii LI, Konev SV (1986) Intercellular interactions as a reason for the influence of the erythrocyte concentration on the parameters of detergent hemolysis [in Russian]. Tsitologiia 28:964–969PubMedGoogle Scholar
  13. Kenno KA, Severson DL (1985) Lipolysis in isolated myocardial cells from diabetic rat hearts. Am J Physiol Heart Circ Physiol 249:H1024–H1030Google Scholar
  14. Koumanov KS, Tessier C, Momchilova AB et al (2005) Comparative lipid analysis and structure of detergent-resistant membrane raft fractions isolated from human and ruminant erythrocytes. Arch Biochem Biophys 434:150–158CrossRefPubMedGoogle Scholar
  15. Laposata EA, Lange LG (1986) Presence of nonoxidative ethanol metabolism in human organs commonly damaged by ethanol abuse. Science 231:497–499CrossRefPubMedGoogle Scholar
  16. Lee NM, Brady CW (2009) Liver disease in pregnancy. World J Gastroenterol 15:897–906CrossRefPubMedGoogle Scholar
  17. Leidl K, Liebisch G, Richter D, Schmitz G (2008) Mass spectrometric analysis of lipid species of human circulating blood cells. Biochim Biophys Acta 1781:655–664PubMedGoogle Scholar
  18. Mironova GD, Gateau-Roesch O, Levrat C et al (2001) Palmitic and stearic acids bind Ca2+ with high affinity and form nonspecific channels in black-lipid membranes. Possible relation to Ca2+-activated mitochondrial pores. J Bioenerg Biomembr 33:319–331CrossRefPubMedGoogle Scholar
  19. Mironova GD, Gritsenko E, Gateau-Roesch O et al (2004) Formation of palmitic acid/Ca2+ complexes in the mitochondrial membrane: a possible role in the cyclosporin-insensitive permeability transition. J Bioenerg Biomembr 36:171–178CrossRefPubMedGoogle Scholar
  20. Mironova GD, Belosludtsev KN, Belosludtseva NV et al (2007) Mitochondrial Ca2+ cycle mediated by the palmitate-activated cyclosporin A-insensitive pore. J Bioenerg Biomembr 39:167–174CrossRefPubMedGoogle Scholar
  21. Mohandas N, Gallagher PG (2008) Red cell membrane: past, present, and future. Blood 112:3939–3948CrossRefPubMedGoogle Scholar
  22. Schönfeld P, Struy H (1999) Refsum disease diagnostic marker phytanic acid alters the physical state of membrane proteins of liver mitochondria. FEBS Lett 457:179–183CrossRefPubMedGoogle Scholar
  23. Schwarz G, Arbuzova A (1995) Pore kinetics reflected in the dequenching of a lipid vesicle entrapped fluorescent dye. Biochim Biophys Acta 1239:51–57CrossRefPubMedGoogle Scholar
  24. Shimabukuro M, Zhou Y, Levi M, Unger R (1998) Fatty acid-induced beta cell apoptosis: a link between obesity and diabetes. Proc Natl Acad Sci USA 95:2498–2502CrossRefPubMedGoogle Scholar
  25. Sparagna G, Hickson-Bick D, Buja L, McMillin J (2000) A metabolic role for mitochondria in palmitate-induced cardiac myocyte apoptosis. Am J Physiol Heart Circ Physiol 279:2124–2132Google Scholar
  26. Sultan A, Sokolove P (2001) Palmitic acid opens a novel cyclosporin A-insensitive pore in the inner mitochondrial membrane. Arch Biochem Biophys 386:31–51Google Scholar
  27. Wrońska-Nofer T, Rosin J, Bartosz G (1991) Interaction of ethanol and xylene in their effects on erythrocytes and other haematological parameters in the rat. J Appl Toxicol 11:289–292CrossRefPubMedGoogle Scholar
  28. Zavodnik IB, Piletskaia TP, Stepuro II (1991) The effect of temperature on lysis of human erythrocytes by palmitic acid [in Russian]. Biofizika 36:1056–1060PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Konstantin N. Belosludtsev
    • 1
    Email author
  • Alexander S. Trudovishnikov
    • 1
  • Natalia V. Belosludtseva
    • 1
    • 2
  • Alexey V. Agafonov
    • 1
    • 2
  • Galina D. Mironova
    • 1
    • 2
  1. 1.Institute of Theoretical and Experimental Biophysics RASMoscow RegionRussia
  2. 2.Pushchino State UniversityMoscow RegionRussia

Personalised recommendations