The Journal of Membrane Biology

, Volume 236, Issue 1, pp 117–125 | Cite as

Hollow Microneedle Arrays for Intradermal Drug Delivery and DNA Electroporation

  • Liévin Daugimont
  • Nolwenn Baron
  • Gaëlle Vandermeulen
  • Natasa Pavselj
  • Damijan Miklavcic
  • Marie-Caroline Jullien
  • Gonzalo Cabodevila
  • Lluis M. Mir
  • Véronique Préat
Article

Abstract

The association of microneedles with electric pulses causing electroporation could result in an efficient and less painful delivery of drugs and DNA into the skin. Hollow conductive microneedles were used for (1) needle-free intradermal injection and (2) electric pulse application in order to achieve electric field in the superficial layers of the skin sufficient for electroporation. Microneedle array was used in combination with a vibratory inserter to disrupt the stratum corneum, thus piercing the skin. Effective injection of proteins into the skin was achieved, resulting in an immune response directed to the model antigen ovalbumin. However, when used both as microneedles to inject and as electrodes to apply the electric pulses, the setup showed several limitations for DNA electrotransfer. This could be due to the distribution of the electric field in the skin as shown by numerical calculations and/or the low dose of DNA injected. Further investigation of these parameters is needed in order to optimize minimally invasive DNA electrotransfer in the skin.

Keywords

Microneedle Skin Electroporation Drug delivery DNA Electric field distribution 

Notes

Acknowledgments

Are addressed to the UE sixth framework program and the Angioskin consortium (LSH-2003-512127) that made this work possible.

References

  1. André FM, Gehl J, Sersa G et al (2008) Efficiency of high- and low-voltage pulse combinations for gene electrotransfer in muscle, liver, tumor, and skin. Hum Gene Ther 19:1261–1271CrossRefPubMedGoogle Scholar
  2. Bal SM, Caussin J, Pavel S et al (2008) In vivo assessment of safety of microneedle arrays in human skin. Eur J Pharm Sci 35:193–202CrossRefPubMedGoogle Scholar
  3. Bodles-Brakhop AM, Heller R, Draghia-Akli R (2009) Electroporation for the delivery of DNA-based vaccines and immunotherapeutics: current clinical developments. Mol Ther 17:585–592CrossRefPubMedGoogle Scholar
  4. Chabri F, Bouris K, Jones T et al (2004) Microfabricated silicon microneedles for nonviral cutaneous gene delivery. Br J Dermatol 150:869–877CrossRefPubMedGoogle Scholar
  5. Dujardin N, Staes E, Kalia Y et al (2002) In vivo assessment of skin electroporation using square wave pulses. J Control Release 79:219–227CrossRefPubMedGoogle Scholar
  6. Gill HS, Prausnitz MR (2007) Coated microneedles for transdermal delivery. J Control Release 117:227–237CrossRefPubMedGoogle Scholar
  7. Henry S, McAllister DV, Allen MG et al (1998) Microfabricated microneedles: a novel approach to transdermal drug delivery. J Pharm Sci 87:922–925CrossRefPubMedGoogle Scholar
  8. Hoel A, Baron N, Cabodevila G et al (2008) Microfluidic distribution system for an array of hollow microneedles. J Micromech Microeng 18:065019CrossRefGoogle Scholar
  9. Hooper JW, Golden JW, Ferro AM, King AD (2007) Smallpox DNA vaccine delivered by novel skin electroporation device protects mice against intranasal poxvirus challenge. Vaccine 25:1814–1823CrossRefPubMedGoogle Scholar
  10. Kaushik S, Hord AH, Denson DD et al (2001) Lack of pain associated with microfabricated microneedles. Anesth Analg 92:502–504CrossRefPubMedGoogle Scholar
  11. Kolli CS, Banga AK (2008) Characterization of solid maltose microneedles and their use for transdermal delivery. Pharm Res 25:104–113CrossRefPubMedGoogle Scholar
  12. Lackovic I, Magjarevic R, Miklavcic D (2009) Three-dimensional finite-element analysis of joule heating in electrochemotherapy and in vivo gene electrotransfer. IEEE Trans Dielec Elec Insul 16:1338–1347CrossRefGoogle Scholar
  13. Lin W, Cormier M, Samiee A et al (2001) Transdermal delivery of antisense oligonucleotides with microprojection patch (Macroflux) technology. Pharm Res 18:1789–1793CrossRefPubMedGoogle Scholar
  14. Martanto W, Davis SP, Holiday NR et al (2004) Transdermal delivery of insulin using microneedles in vivo. Pharm Res 21:947–952CrossRefPubMedGoogle Scholar
  15. Miklavcic D, Pucihar G, Pavlovec M et al (2005) The effect of high frequency electric pulses on muscle contractions and antitumor efficiency in vivo for a potential use in clinical electrochemotherapy. Bioelectrochemistry 65:121–128CrossRefPubMedGoogle Scholar
  16. Mir LM (2009) Nucleic acids electrotransfer-based gene therapy (electrogenetherapy): past, current, and future. Mol Biotechnol 43:167–176CrossRefPubMedGoogle Scholar
  17. Oh JH, Park HH, Do KY et al (2008) Influence of the delivery systems using a microneedle array on the permeation of a hydrophilic molecule, calcein. Eur J Pharm Biopharm 69:1040–1045CrossRefPubMedGoogle Scholar
  18. Park JH, Allen MG, Prausnitz MR (2005) Biodegradable polymer microneedles: fabrication, mechanics and transdermal drug delivery. J Control Release 104:51–66CrossRefPubMedGoogle Scholar
  19. Pavselj N, Miklavcic D (2008) Numerical modeling in electroporation-based biomedical applications. Radiol Oncol 42:159–168CrossRefGoogle Scholar
  20. Pavselj N, Préat V (2005) DNA electrotransfer into the skin using a combination of one high- and one low-voltage pulse. J Control Release 106:407–415CrossRefPubMedGoogle Scholar
  21. Pavselj N, Préat V, Miklavcic D (2007) A numerical model of skin electropermeabilization based on in vivo experiments. Ann Biomed Eng 35:2138–2144CrossRefPubMedGoogle Scholar
  22. Prausnitz MR (2004) Microneedles for transdermal drug delivery. Adv Drug Delivery Rev 56:581–587CrossRefGoogle Scholar
  23. Prausnitz MR, Langer R (2008) Transdermal drug delivery. Nat Biotechnol 26:1261–1268CrossRefPubMedGoogle Scholar
  24. Roxhed N, Griss P, Stemme G (2008) Membrane-sealed hollow microneedles and related administration schemes for transdermal drug delivery. Biomed Microdevices 10:271–279CrossRefPubMedGoogle Scholar
  25. Sivamani RK, Stoeber B, Liepmann D et al (2009) Microneedle penetration and injection past the stratum corneum in humans. J Dermatol Treat 20:156–159CrossRefGoogle Scholar
  26. Vandermeulen G, Staes E, Vanderhaeghen ML et al (2007) Optimisation of intradermal DNA electrotransfer for immunization. J Control Release 124:81–87CrossRefPubMedGoogle Scholar
  27. Vandermeulen G, Daugimont L, Préat V (2008) DNA transfer in the skin. In: Walters KA, Roberts MS (eds) Dermatologic, cosmeceutic and cosmetic development: therapeutic and novel approaches. Informa Healthcare, New York, pp 537–555Google Scholar
  28. Vandermeulen G, Daugimont L, Richiardi H et al (2009) Effect of tape stripping and adjuvants on immune response after intradermal DNA electroporation. Pharm Res 26:1745–1751CrossRefPubMedGoogle Scholar
  29. Vemulapalli V, Yang Y, Friden PM et al (2008) Synergistic effect of iontophoresis and soluble microneedles for transdermal delivery of methotrexate. J Pharm Pharmacol 60:27–33CrossRefPubMedGoogle Scholar
  30. Verbaan FJ, Bal SM, van den Berg DJ et al (2008) Improved piercing of microneedle arrays in dermatomed human skin by an impact insertion method. J Control Release 128:80–88CrossRefPubMedGoogle Scholar
  31. Wang PM, Cornwell M, Hill J et al (2006) Precise microinjection into skin using hollow microneedles. J Invest Dermatol 126:1080–1087CrossRefPubMedGoogle Scholar
  32. Whitesides GM, Xia Y (1998) Soft lithography. Annu Rev Mater Sci 28:153–184CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Liévin Daugimont
    • 1
  • Nolwenn Baron
    • 2
  • Gaëlle Vandermeulen
    • 1
  • Natasa Pavselj
    • 3
  • Damijan Miklavcic
    • 3
  • Marie-Caroline Jullien
    • 4
  • Gonzalo Cabodevila
    • 2
  • Lluis M. Mir
    • 5
  • Véronique Préat
    • 1
  1. 1.Louvain Drug Research Institute, Unité de pharmacie galéniqueUniversité Catholique de LouvainBrusselsBelgium
  2. 2.Département MN2SInstitut FEMTO-ST, UMR CNRS 6174, ENSMMBesançonFrance
  3. 3.Faculty of Electrical EngineeringUniversity of LjubljanaLjubljanaSlovenia
  4. 4.CNRS UMR 8029SATIE, ENS Cachan BretagneBruzFrance
  5. 5.CNRS UMR 8203, Institut Gustave-RoussyVillejuif and Université Paris-SudOrsayFrance

Personalised recommendations