Advertisement

Journal of Membrane Biology

, Volume 234, Issue 3, pp 183–194 | Cite as

Membrane Organization and Regulation of Cellular Cholesterol Homeostasis

  • María S. Jaureguiberry
  • M. Alejandra Tricerri
  • Susana A. Sanchez
  • Horacio A. Garda
  • Gabriela S. Finarelli
  • Marina C. Gonzalez
  • Omar J. Rimoldi
Article

Abstract

An excess of intracellular free cholesterol (Chol) is cytotoxic, and its homeostasis is crucial for cell viability. Apolipoprotein A-I (apoA-I) is a highly efficient Chol acceptor because it activates complex cellular pathways that tend to mobilize and export Chol from cellular depots. We hypothesize that membrane composition and/or organization is strongly involved in Chol homeostasis. To test this hypothesis, we constructed a cell line overexpressing stearoyl coenzyme A (CoA) desaturase (SCD cells), which modifies plasma membrane (PM) composition by the enrichment of monounsaturated fatty acids, and determined this effect on membrane properties, cell viability, and Chol homeostasis. PM in SCD cells has a higher ratio of phospholipids to sphingomyelin and is slightly enriched in Chol. These cells showed an increase in the ratio of cholesteryl esters to free Chol; they were more resistant to Chol toxicity, and they exported more caveolin than control cells. The data suggest that cell functionality is preserved by regulating membrane fluidity and Chol exportation and storage.

Keywords

Stearoyl CoA desaturase Human apolipoprotein A-I Membrane heterogeneity Cholesterol transport Chinese hamster ovary cells Intracellular cholesterol storage Caveolin Cytotoxicity 

Notes

Acknowledgments

The work presented here was supported by the Agencia Nacional de Promoción Científica y Tecnológica, Argentina, grants 14443 to OJR and 26228 to HAG, Consejo de Investigaciones Científicas y Técnicas (PIP 112-200801-00953 to HAG), and the Australian Fluorescence Foundation R108 and International Cooperation (CONICET) to MAT. We thank L. Hernandez for her expertise and technical support with apoA-I purification and figure preparation. OJR, HAG, MCG, and MAT are members of the Carrera del Investigador Científico (CONICET), Argentina. SS acknowledges the National Institutes of Health (grant PHS 5 P41 RR-03155, US).

References

  1. Bagatolli LA, Sanchez SA, Hazlett T, Gratton E (2003) Giant vesicles, Laurdan, and two-photon fluorescence microscopy: evidence of lipid lateral separation in bilayers. Methods Enzymol 360:481–500CrossRefPubMedGoogle Scholar
  2. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917PubMedGoogle Scholar
  3. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefPubMedGoogle Scholar
  4. Cezanne L, Navarro L, Tocanne JF (1992) Isolation of the plasma membrane and organelles from Chinese hamster ovary cells. Biochim Biophys Acta 1112:205–214CrossRefPubMedGoogle Scholar
  5. De Felice FG, Houzel JC, Garcia-Abreu J, Louzada PR Jr, Afonso RC, Meirelles MN, Lent R, Neto VM, Ferreira ST (2001) Inhibition of Alzheimer’s disease beta-amyloid aggregation, neurotoxicity, and in vivo deposition by nitrophenols: implications for Alzheimer’s therapy. FASEB J 15:1297–1299PubMedGoogle Scholar
  6. Enoch HG, Catala A, Strittmatter P (1976) Mechanism of rat liver microsomal stearyl-CoA desaturase. Studies of the substrate specificity, enzyme–substrate interactions, and the function of lipid. J Biol Chem 251:5095–5103PubMedGoogle Scholar
  7. Fielding PE, Nagao K, Hakamata H, Chimini G, Fielding CJ (2000) A two-step mechanism for free cholesterol and phospholipid efflux from human vascular cells to apolipoprotein A-1. Biochemistry 39:14113–14120CrossRefPubMedGoogle Scholar
  8. Folch J, Lees M, Stanley GHS (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226:497–509PubMedGoogle Scholar
  9. Frank PG, Cheung MW, Pavlides S, Llaverias G, Park DS, Lisanti MP (2006) Caveolin-1 and regulation of cellular cholesterol homeostasis. Am J Physiol Heart Circ Physiol 291:H677–H686CrossRefPubMedGoogle Scholar
  10. Gargalovic P, Dory L (2003) Cellular apoptosis is associated with increased caveolin-1 expression in macrophages. J Lipid Res 44:1622–1632CrossRefPubMedGoogle Scholar
  11. Gaus K, Gratton E, Kable EP, Jones AS, Gelissen I, Kritharides L, Jessup W (2003) Visualizing lipid structure and raft domains in living cells with two-photon microscopy. Proc Natl Acad Sci USA 100:15554–15559CrossRefPubMedGoogle Scholar
  12. Gonzalez MC, Toledo JD, Tricerri MA, Garda HA (2008) The central type Y amphipathic alpha-helices of apolipoprotein AI are involved in the mobilization of intracellular cholesterol depots. Arch Biochem Biophys 473:34–41PubMedGoogle Scholar
  13. Harris FM, Best KB, Bell JD (2002) Use of laurdan fluorescence intensity and polarization to distinguish between changes in membrane fluidity and phospholipid order. Biochim Biophys Acta 1565:123–128CrossRefPubMedGoogle Scholar
  14. Heiner AL, Gibbons E, Fairbourn JL, Gonzalez LJ, McLemore CO, Brueseke TJ, Judd AM, Bell JD (2008) Effects of cholesterol on physical properties of human erythrocyte membranes: impact on susceptibility to hydrolysis by secretory phospholipase A2. Biophys J 94:3084–3093CrossRefPubMedGoogle Scholar
  15. Jacobson K, Mouritsen OG, Anderson RG (2007) Lipid rafts: at a crossroad between cell biology and physics. Nat Cell Biol 9:7–14CrossRefPubMedGoogle Scholar
  16. Kellner-Weibel G, Geng YJ, Rothblat GH (1999) Cytotoxic cholesterol is generated by the hydrolysis of cytoplasmic cholesteryl ester and transported to the plasma membrane. Atherosclerosis 146:309–319CrossRefPubMedGoogle Scholar
  17. Lange Y, Steck TL (2008) Cholesterol homeostasis and the escape tendency (activity) of plasma membrane cholesterol. Prog Lipid Res 47:319–332CrossRefPubMedGoogle Scholar
  18. Liu P, Li WP, Machleidt T, Anderson RG (1999) Identification of caveolin-1 in lipoprotein particles secreted by exocrine cells. Nat Cell Biol 1:369–375CrossRefPubMedGoogle Scholar
  19. Liu P, Rudick M, Anderson RG (2002) Multiple functions of caveolin-1. J Biol Chem 277:41295–41298CrossRefPubMedGoogle Scholar
  20. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275PubMedGoogle Scholar
  21. Mander EL, Dean RT, Stanley KK, Jessup W (1994) Apolipoprotein B of oxidized LDL accumulates in the lysosomes of macrophages. Biochim Biophys Acta 1212:80–92PubMedGoogle Scholar
  22. Melchert RB, Liu H, Granberry MC, Kennedy RH (2001) Lovastatin inhibits phenylephrine-induced ERK activation and growth of cardiac. Cardiovasc Toxicol 1:237–252CrossRefPubMedGoogle Scholar
  23. Mendez AJ, Lin G, Wade DP, Lawn RM, Oram JF (2001) Membrane lipid domains distinct from cholesterol/sphingomyelin-rich rafts are involved in the ABCA1-mediated lipid secretory pathway. J Biol Chem 276:3158–3166CrossRefPubMedGoogle Scholar
  24. Montes LR, Alonso A, Goni FM, Bagatolli LA (2007) Giant unilamellar vesicles electroformed from native membranes and organic lipid mixtures under physiological conditions. Biophys J 93:3548–3554CrossRefPubMedGoogle Scholar
  25. Nandi S, Ma L, Denis M, Karwatsky J, Li Z, Jiang XC, Zha X (2009) ABCA1-mediated cholesterol efflux generates microparticles in addition to HDL through processes governed by membrane rigidity. J Lipid Res 50:456–466CrossRefPubMedGoogle Scholar
  26. Oram JF (2002) ATP-binding cassette transporter A1 and cholesterol trafficking. Curr Opin Lipidol 13:373–381CrossRefPubMedGoogle Scholar
  27. Oram JF, Heinecke JW (2005) ATP-binding cassette transporter A1: a cell cholesterol exporter that protects against cardiovascular disease. Physiol Rev 85:1343–1372CrossRefPubMedGoogle Scholar
  28. Parasassi T, Gratton E (1995) Membrane lipid domains and dynamics as detected by Laurdan fluorescence. J Fluoresc 8:365–373CrossRefGoogle Scholar
  29. Parasassi T, Gratton E, Yu WM, Wilson P, Levi M (1997) Two-photon fluorescence microscopy of laurdan generalized polarization domains in model and natural membranes. Biophys J 72:2413–2429CrossRefPubMedGoogle Scholar
  30. Peter A, Weigert C, Staiger H, Rittig K, Cegan A, Lutz P, Machicao F, Haring HU, Schleicher E (2008) Induction of stearoyl-CoA desaturase protects human arterial endothelial cells against lipotoxicity. Am J Physiol Endocrinol Metab 295:E339–E349CrossRefPubMedGoogle Scholar
  31. Pol A, Martin S, Fernandez MA, Ferguson C, Carozzi A, Luetterforst R, Enrich C, Parton RG (2004) Dynamic and regulated association of caveolin with lipid bodies: modulation of lipid body motility and function by a dominant negative mutant. Mol Biol Cell 15:99–110CrossRefPubMedGoogle Scholar
  32. Prinz WA (2007) Non-vesicular sterol transport in cells. Prog Lipid Res 46:297–314CrossRefPubMedGoogle Scholar
  33. Sambrook J, Fritsch EF, Maniatis T (eds) (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Press, Cold Spring Harbor, New York, pp 938–957Google Scholar
  34. Sanchez SA, Bagatolli LA, Gratton E, Hazlett TL (2002) A two-photon view of an enzyme at work: Crotalus atrox venom PLA2 interaction with single-lipid and mixed-lipid giant unilamellar vesicles. Biophys J 82:2232–2243CrossRefPubMedGoogle Scholar
  35. Sanchez SA, Tricerri MA, Gratton E (2007a) Interaction of high density lipoprotein particles with membranes containing cholesterol. J Lipid Res 48:1689–1700CrossRefPubMedGoogle Scholar
  36. Sanchez SA, Tricerri MA, Gunther G, Gratton E (2007b) Laurdan generalized polarization: from cuvette to microscope. In: Méndez-Vilas A, Díaz J (eds) Modern research and educational topics in microscopy: applications in physical/chemical sciences. Formatex Research Center, Badajoz, Spain, pp 1007–1014Google Scholar
  37. Schroeder F, Gallegos AM, Atshaves BP, Storey SM, McIntosh AL, Petrescu AD, Huang H, Starodub O, Chao H, Yang H, Frolov A, Kier AB (2001) Recent advances in membrane microdomains: rafts, caveolae, and intracellular cholesterol trafficking. Exp Biol Med (Maywood) 226:873–890Google Scholar
  38. Schroeder F, Atshaves BP, McIntosh AL, Gallegos AM, Storey SM, Parr RD, Jefferson JR, Ball JM, Kier AB (2007) Sterol carrier protein-2: new roles in regulating lipid rafts and signaling. Biochim Biophys Acta 1771:700–718PubMedGoogle Scholar
  39. Simons K, Toomre D (2000) Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1:31–39CrossRefPubMedGoogle Scholar
  40. Simons K, Vaz WL (2004) Model systems, lipid rafts, and cell membranes. Annu Rev Biophys Biomol Struct 33:269–295CrossRefPubMedGoogle Scholar
  41. Smith SK, Farnbach AR, Harris FM, Hawes AC, Jackson LR, Judd AM, Vest RS, Sanchez S, Bell JD (2001) Mechanisms by which intracellular calcium induces susceptibility to secretory phospholipase A2 in human erythrocytes. J Biol Chem 276:22732–22741CrossRefPubMedGoogle Scholar
  42. Smith JD, Le Goff W, Settle M, Brubaker G, Waelde C, Horwitz A, Oda MN (2004) ABCA1 mediates concurrent cholesterol and phospholipid efflux to apolipoprotein A-I. J Lipid Res 45:635–644CrossRefPubMedGoogle Scholar
  43. So PTC, French T, Yu WM, Berland KM, Dong CY, Gratton E (1995) Time resolved fluorescence microscopy using two photon excitation. Bioimaging 3:49–63CrossRefGoogle Scholar
  44. Storey SM, Gallegos AM, Atshaves BP, McIntosh AL, Martin GG, Parr RD, Landrock KK, Kier AB, Ball JM, Schroeder F (2007) Selective cholesterol dynamics between lipoproteins and caveolae/lipid rafts. Biochemistry 46:13891–13906CrossRefPubMedGoogle Scholar
  45. Sun Y, Hao M, Luo Y, Liang CP, Silver DL, Cheng C, Maxfield FR, Tall AR (2003) Stearoyl-CoA desaturase inhibits ATP-binding cassette transporter A1-mediated cholesterol efflux and modulates membrane domain structure. J Biol Chem 278:5813–5820CrossRefPubMedGoogle Scholar
  46. Sviridov D, Fidge N, Beaumier-Gallon G, Fielding C (2001) Apolipoprotein A-I stimulates the transport of intracellular cholesterol to cell-surface cholesterol-rich domains (caveolae). Biochem J 358:79–86CrossRefPubMedGoogle Scholar
  47. Tricerri A, Corsico B, Toledo JD, Garda HA, Brenner RR (1998) Conformation of apolipoprotein AI in reconstituted lipoprotein particles and particle-membrane interaction: effect of cholesterol. Biochim Biophys Acta 1391:67–78PubMedGoogle Scholar
  48. Tricerri MA, Toledo JD, Sanchez SA, Hazlett TL, Gratton E, Jonas A, Garda HA (2005) Visualization and analysis of apolipoprotein A-I interaction with binary phospholipid bilayers. J Lipid Res 46:669–678CrossRefPubMedGoogle Scholar
  49. Weber G, Farris FJ (1979) Synthesis and spectral properties of a hydrophobic fluorescent probe: 6-propionyl-2-(dimethylamino)naphthalene. Biochemistry 18:3075–3078CrossRefPubMedGoogle Scholar
  50. Williams TM, Lisanti MP (2004) The caveolin proteins. Genome Biol 5:214CrossRefPubMedGoogle Scholar
  51. Yamauchi Y, Chang CC, Hayashi M, Abe-Dohmae S, Reid PC, Chang TY, Yokoyama S (2004) Intracellular cholesterol mobilization involved in the ABCA1/apolipoprotein-mediated assembly of high density lipoprotein in fibroblasts. J Lipid Res 45:1943–1951CrossRefPubMedGoogle Scholar
  52. Yancey PG, Bortnick AE, Kellner-Weibel G, de la Llera-Moya M, Phillips MC, Rothblat GH (2003) Importance of different pathways of cellular cholesterol efflux. Arterioscler Thromb Vasc Biol 23:712–719CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • María S. Jaureguiberry
    • 1
  • M. Alejandra Tricerri
    • 1
  • Susana A. Sanchez
    • 2
  • Horacio A. Garda
    • 1
  • Gabriela S. Finarelli
    • 1
  • Marina C. Gonzalez
    • 1
  • Omar J. Rimoldi
    • 1
  1. 1.Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP)CONICET/UNLP, Facultad de Ciencias MédicasBuenos AiresArgentina
  2. 2.Laboratory for Fluorescence DynamicsUniversity of California-IrvineIrvineUSA

Personalised recommendations