Journal of Membrane Biology

, 225:27 | Cite as

Characterization of the Mechanism of the Staphylococcus aureus Cell Envelope by Bacitracin and Bacitracin-Metal Ions

  • Zu-De Qi
  • Yi Lin
  • Bo Zhou
  • Xiao-Di Ren
  • Dai-Wen Pang
  • Yi Liu
Article

Abstract

Bacitracin is a metal-dependent dodecapeptide antipeptide produced by Bacillus species. Microcalorimetry was used to study the antimicrobial activity of bacitracin and bacitracin–metal ion complexation inhibited on Staphylococcus aureus at 37°C. The affinity of metal ions binding to bacitracin was investigated by isothermal titration calorimetry and was as follows: Cu(II) ≥ Ni(II) > Co(II) > Zn(II) ≥ Mn(II). The metal ion binding affinity is not relative to the antimicrobial activity of bacitracin–metal complexation. Atomic force microscopic images revealed that the surface of S. aureus treated by bacitracin–Zn(II) was rather rough compared to that treated by bacitracin only. The central cell surface displayed small depressed grooves around the septal annulus at the onset of division. Bacitracin mainly inhibited the splitting system within the thick cross walls as seen by transmission electron microscopy (TEM). The inhibition mechanism of bacitracin may be relative to the assistance of Zn(II) coordination with the cell surface as seen by TEM. We can put forward that the activity of bacitracin only inhibited growth and division initially from the synthesis of the cell wall, especially the cell wall of the septal annulus. The divalent metal ions function to increase the adsorption of bacitracin onto the cell surface.

Keywords

Staphylococcus aureus Microcalorimetry Isothermal titration calorimetry Atomic force microscopy Thin-section transmission electron microscopy Bacitracin 

References

  1. Abdulrahim SMM, Haddadin SY, Odetallah NHM, Robinson RK (1999) Effect of Lactobacillus acidophilus and zinc bacitracin as dietary additives for broiler chickens. Br Poultry Sci 40:91–94CrossRefGoogle Scholar
  2. Bechtel DB, Bulla LA Jr (1976) Electron microscope study of sporulation and parasporal crystal formation in Bacillus thuringiensis. J Bacteriol 127:1472–1481PubMedGoogle Scholar
  3. Beveridge TJ, Popkin TJ, Cole RM (1993) Electron microscopy. In: Gerhardted P (ed) Methods for general and molecular bacteriology. American Society for Microbiology, Washington DC, pp 42–71Google Scholar
  4. Braga PC, Ricci D (1998) Atomic force microscopy: application to investigation of Escherichia coli morphology before and after exposure to cefodizime. Antimicrob Agents Chemother 42:18–22PubMedGoogle Scholar
  5. Braga PC, Ricci D (2000) Detection of rokitamycin induced morphostructural alterations in Helicobacter pylori by atomic force microscopy. Chemotherapy 46:15–22PubMedCrossRefGoogle Scholar
  6. Braga PC, Ricci D (2002) Differences in the susceptibility of Streptococcus pyogenes to rokitamycin and erythromycin A revealed by morphostructural atomic force microscopy. J Antimicrob Chemother 50:457–460PubMedCrossRefGoogle Scholar
  7. Braga PC, Sasso M, Maci DS (1997) Cefodizime: effects of sub-inhibitory concentrations on adhesiveness and bacterial morphology of Staphylococcus aureus and Escherichia coli: comparison with cefotaxime and ceftriaxone. J Antimicrob Chemother 39:79–84PubMedCrossRefGoogle Scholar
  8. Calabrese EJ, Blain R (2005) The occurrence of hormetic dose responses in the toxicological literature, the hormesis database: an overview. Toxicol Appl Pharmacol 202:289–301PubMedCrossRefGoogle Scholar
  9. Chang TW, Gorbach SL, Bartlett JG, Saginur R (1980) Bacitracin treatment of antibiotic-associated colitis and diarrhea caused by Clostridium difficile toxin. Gastroenterology 78:1584–1586PubMedGoogle Scholar
  10. Chaw KC, Manimaran M, Tay FEH (2005) Role of silver ions in destabilization of intermolecular adhesion forces measured by atomic force microscopy in Staphylococcus epidermidis biofilms. Antimicrob Agents Chemother 49:4853–4859PubMedCrossRefGoogle Scholar
  11. Dufrêne YF (2004a) Refining our perception of bacterial surfaces with the atomic force microscope. J Bacteriol 186:3283–3285PubMedCrossRefGoogle Scholar
  12. Dufrêne YF (2004b) Using nanotechniques to explore microbial surfaces. Nat Rev Microbiol 2:451–460PubMedCrossRefGoogle Scholar
  13. Epperson JD, Ming LJ (2000) Proton NMR studies of Co II complexes of the peptide antibiotic bacitracin and analogues: insight into structure–activity relationship. Biochemistry 39:4037–4045PubMedCrossRefGoogle Scholar
  14. Froyshov O (1984) The bacitracins: properties, biosynthesis, and fermentation. In: Vandamme EJ (ed) Biotechnology of industrial antibiotics. Marcel Dekker, New York, pp 665–694Google Scholar
  15. Garbutt JT, Morehouse AL, Hanson AM (1961) Metal binding properties of bacitracins. J Agric Food Chem 9:285CrossRefGoogle Scholar
  16. Giesbrecht P, Wecke J, Reinicke B (1976) On the morphogenesis of the cell wall of staphylococci. Int Rev Cytol 44:225–318PubMedCrossRefGoogle Scholar
  17. Giesbrecht P, Kersten T, Maidhof H, Wecke J (1997) Two alternative mechanisms of cell separation in staphylococci: one lytic and one mechanical. Arch Microbiol 167:239–250PubMedCrossRefGoogle Scholar
  18. Giesbrecht P, Kersten T, Maidhof H, Wecke J (1998) Staphylococcal cell wall: morphogenesis and fatal variations in the presence of penicillin. Microbiol Mol Biol Rev 62:1371–1414PubMedGoogle Scholar
  19. Hammes WP, Otto Kandler JW (1979) The sensitivity of the pseudomurein-containing genus Methanobacterium to inhibitors of murein synthesis. Arch Microbiol 123:275–279CrossRefGoogle Scholar
  20. Harel YM, Bailone A, Bibi E (1999) Resistance to bacitracin as modulated by an Escherichia coli homologue of the bacitracin ABC transporter BcrC subunit from Bacillus licheniformis. J Bacteriol 181:6176–6178PubMedGoogle Scholar
  21. Hirotsu Y, Nishiuchi Y, Shiba T (1978) Total synthesis of bacitracin F. Peptide Chem 9:171–176Google Scholar
  22. Johansen CTG, Gram L (1996) Changes in cell morphology of Listeria monocytogenes and Shewanella putrefaciens resulting from the action of protamine. Appl Environ Microbiol 62:1058–1064PubMedGoogle Scholar
  23. Konigsberg W, Craig LC (1962) On bacitracin F. J Org Chem 27:934–938CrossRefGoogle Scholar
  24. Konz D, Klens A, Schörgendorfer K, Marahiel MA (1997) The bacitracin biosynthesis operon of Bacillus licheniformis ATCC 10716: molecular characterization of three multi-modular peptide synthetases. Chem Biol 4:927–937PubMedCrossRefGoogle Scholar
  25. Kotra LP, Golemi D, Amro NA, Liu GY, Mobashery S (1999) Dynamics of the lipopolysaccharide assembly on the surface of Escherichia coli. J Am Chem Soc 121:8707–8711CrossRefGoogle Scholar
  26. Lyon BR, Skurray R (1987) Antimicrobial resistance of Staphylococcus aureus: genetic basis. Microbiol Rev 51:88–134PubMedGoogle Scholar
  27. MacKenzie FM, Greig P, Morrison D, Edwards G, Gould IM (2002) Identification and characterization of teicoplanin-intermediate Staphylococcus aureus blood culture isolates in NE Scotland. J Antimicrob Chemother 50:689–697PubMedCrossRefGoogle Scholar
  28. Matias VRF, Beveridge TJ (2006) Native cell wall organization shown by cryo-electron microscopy confirms the existence of a periplasmic space in Staphylococcus aureus. J Bacteriol 188:1011–1021PubMedCrossRefGoogle Scholar
  29. Matsuzaki K, Murase O, Tokuda H, Funakoshi S, Fujii N, Miyajima K (1994) Orientational and aggregational states of magainin 2 in phospholipid bilayers. Biochemistry 33:3342–3349PubMedCrossRefGoogle Scholar
  30. Meincken M, Holroyd DL, Rautenbach M (2005) Atomic force microscopy study of the effect of antimicrobial peptides on the cell envelope of Escherichia coli. Antimicrob Agents Chemother 49:4085–4092PubMedCrossRefGoogle Scholar
  31. Ming LJ, Epperson JD (2002) Metal binding and structure–activity relationship of the metalloantibiotic peptide bacitracin. J Inorg Biochem 91:46–58PubMedCrossRefGoogle Scholar
  32. Monroe S, Polk R (2000) Antimicrobial use and bacterial resistance. Curr Opin Microbiol 3:496–501PubMedCrossRefGoogle Scholar
  33. Nagaraja TG, Chengappa MM (1998) Liver abscesses in feedlot cattle: a review. J Anim Sci 76:287–298PubMedGoogle Scholar
  34. O’Neill NM, Vine GJ, Beezer AE, Bishop AH, Hadgraft J, Labetoulle C, Walker M, Bowler PG (2003) Antimicrobial properties of silver-containing wound dressings: a microcalorimetric study. Int J Pharm 263:61PubMedCrossRefGoogle Scholar
  35. Pancholi V, Fischetti VA (1988) Isolation and characterization of the cell-associated region of group a streptococcal M6 protein. J Bacteriol 170:2618–2624PubMedGoogle Scholar
  36. Paul TR, Venter A, Blaszczak LC, Parr JRTR, Labischinski H, Beveridge TJ (1995) Localization of penicillin-binding proteins to the splitting system of Staphylococcus aureus septa by using a mercury-penicillin v derivative. J Bacteriol 177:3631–3640PubMedGoogle Scholar
  37. Podlesek Z, Comino A, Herzog-Velikonja B, Zgur-Bertok D, Komel R, Grabnar M (1995) Bacillus licheniformis bacitracin resistance ABC transporter: relationship to mammalian multidrug resistance. Mol Microbiol 16:969–976PubMedCrossRefGoogle Scholar
  38. Podlesek Z, Comino A, Herzog-Velikonja B, Grabnar M (2000) The role of the bacitracin ABC transporter in bacitracin resistance and collateral detergent sensitivity. FEMS Microbiol Lett 188:103–106PubMedCrossRefGoogle Scholar
  39. Rao S, Venkateswerlu G (1989) Metal ion influence on the growth inhibition of Neurospora crassa by bacitracin. Microbiology 19:253–258Google Scholar
  40. Rogers HJ, Perkins HR, Ward JB (1980) Microbial cell walls and membranes. Chapman and Hall, LondonGoogle Scholar
  41. Schneewind O, Fowler A, Faull KF (1995) Structure of the cell wall anchor of surface proteins in Staphylococcus aureus. Science 268:103–106PubMedCrossRefGoogle Scholar
  42. Scogin DA, Mosberg HI, Storm DR, Gennis RB (1980) Binding of nickel and zinc ions to bacitracin A. Biochemistry 19:3348–3352PubMedCrossRefGoogle Scholar
  43. Seebauer EG, Duliba EP, Scogin DA, Gennis RB, Belford RL (1983) EPR evidence on the structure of the copper-bacitracin A complex. J Am Chem Soc 105:4926–4929CrossRefGoogle Scholar
  44. Sin DW, Ho C, Wong Y, Ho S, Ip AC (2005) Analysis of major components of residual bacitracin and colistin in food samples by liquid chromatography tandem mass spectrometry. Anal Chim Acta 535:23–31CrossRefGoogle Scholar
  45. Stone KJ, Strominger JL (1971) Mechanism of action of bacitracin: complexation with metal ion and C55 -isoprenyl pyrophosphate. Proc Natl Acad Sci USA 68:3223–3227PubMedCrossRefGoogle Scholar
  46. Storm DR (1974) Mechanism of bacitracin action: a specifc lipidpeptide interaction. Ann NY Acad Sci 235:387–398PubMedCrossRefGoogle Scholar
  47. Storm DR, Strominger JL (1967) Bacitracin: an inhibitor of the dephosphorylation of lipid pyrophosphate, an intermediate in the biosynthesis of the peptidoglycan of bacterial cell walls. Proc Natl Acad Sci USA 57:767–773CrossRefGoogle Scholar
  48. Storm DR, Strominger JL (1973) Complex formation between bacitracin peptides and isoprenyl pyrophosphates. J Biol Chem 248:3940–3945PubMedGoogle Scholar
  49. Suurkuusk J, Wadso I (1982) A multichannel microcalorimetry system. Chem Sci 20:155–163Google Scholar
  50. Tollersrud T, Berge T, Andersen RS, Lund A (2001) Imaging the surface of Staphylococcus aureus by atomic force microscopy. APMIS 109:541–545PubMedCrossRefGoogle Scholar
  51. Toscano WA Jr, Storm DR (1982) Bacitracin. Pharmacol Ther 16:199–210PubMedCrossRefGoogle Scholar
  52. Touhami A, Jericho MH, Boyd JM, Beveridge TJ (2006) Nanoscale characterization and determination of adhesion forces of Pseudomonas aeruginosa pili by using atomic force microscopy. J Bacteriol 188:370–377PubMedCrossRefGoogle Scholar
  53. Tsuji K, Robertson JH (1975) Improved high-performance liquid chromatographic method for polypeptide antibiotics and its application to study the effects of treatments to reduce microbial levels in bacitracin powder. J Chromatogr 112:663–672PubMedCrossRefGoogle Scholar
  54. Verbelen C, Dupres V, Menozzi FD, Raze D, Baulard AR, Hols P, Dufrêne YF (2006) Ethambutol induced alterations in Mycobacterium bovis BCG imaged by atomic force microscopy. FEMS Microbiol Lett 264:192–197PubMedCrossRefGoogle Scholar
  55. Wu M, Maier E, Benz R, Hancock REW (1999) Mechanism of interaction of different classes of cationic antimicrobial peptides with planar bilayers and with the cytoplasmic membrane of Escherichia coli. Biochemistry 38:7235–7242PubMedCrossRefGoogle Scholar
  56. Xie CL, Tang HK, Song ZH, Qu SS, Liao YT, Liu HS (1988) Microcalorimetry study of bacterial growth. Thermochim Acta 123:33–41CrossRefGoogle Scholar
  57. Yamada S, Sugai M, Komatsuzawa H, Nakashima S, Oshida T, Matsumoto A, Suginaka H (1996) An autolysin ring associated with cell separation of Staphylococcus aureus. J Bacteriol 178:1565–1571PubMedGoogle Scholar
  58. Zhao R, Liu Y, Xie ZX, Shen P, Qu SS (2000) A microcalorimetric method for studying the biological effects of La3+ on Escherichia coli. J Biochem Biophys Methods 46:1–9CrossRefGoogle Scholar
  59. Zhou H, Fan T, Zhang XD, Guo Q, Ogawa H (2007) Novel bacteria-templated sonochemical route for the in situ one-step synthesis of ZnS hollow nanostructures. Chem Mater 19:2144–2146CrossRefGoogle Scholar
  60. Zhu JC, Liu Y, Wong WK, Zhou B, Yin J (2006) Investigation of antibacterial activity of two kinds of novel Schiff bases on Escherichia coli by microcalorimetry. Chin J Chem 24:1295–1300CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Zu-De Qi
    • 1
    • 2
  • Yi Lin
    • 1
    • 2
  • Bo Zhou
    • 1
    • 2
  • Xiao-Di Ren
    • 1
  • Dai-Wen Pang
    • 1
    • 2
  • Yi Liu
    • 1
    • 2
    • 3
  1. 1.College of Chemistry and Molecular SciencesWuhan UniversityWuhanPeople’s Republic of China
  2. 2.State Key Laboratory of VirologyWuhan UniversityWuhanPeople’s Republic of China
  3. 3.College of Chemistry and Environmental EngineeringYangtze UniversityJinzhouPeople’s Republic of China

Personalised recommendations