Advertisement

The Journal of Membrane Biology

, Volume 213, Issue 2, pp 111–118 | Cite as

Mechanism and Putative Structure of B0-like Neutral Amino Acid Transporters

  • M. O’Mara
  • A. Oakley
  • S. Bröer
Article

Abstract

The Na+-dependent transport of neutral amino acids in epithelial cells and neurons is mediated by B0-type neutral amino acid transporters. Two B0-type amino acid transporters have been identified in the neurotransmitter transporter family SLC6, namely B0AT1 (SLC6A19) and B0AT2 (SLC6A15). In contrast to other members of this family, B0-like transporters are chloride-independent. B0AT1 and B0AT2 preferentially bind the substrate prior to the Na+-ion. The Na+-concentration affects the K m of the substrate and vice versa. A kinetic scheme is proposed that is consistent with the experimental data. An overlapping binding site of substrate and cosubstrate has been demonstrated in the bacterial orthologue LeuT Aa from Aquifex aeolicus, which elegantly explains the mutual effect of substrate and cosubstrate on each other’s K m -value. LeuT Aa is sequence-related to transporters of the SLC6 family, allowing homology modeling of B0-like transporters along its structure.

Keywords

Hartnup disorder Neurotransmitter transporter Structure modeling SLC6A19 SLC6A15 

Abbreviations

BCH

2-aminobicyclo[2,2,1]heptane-2-carboxylic acid

NMDG

N-methyl-D-glucamine

Notes

Acknowledgement

Work in the laboratory of the authors is supported by grants from the Australian Research Council (ARC) and the National Health and Medical Research Council (NHMRC).

References

  1. Arnold K., Bordoli L., Kopp J., Schwede T. 2006. The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22:195–201PubMedCrossRefGoogle Scholar
  2. Binder H.J. 1970. A comparison of intestinal and renal transport systems. Am. J. Clin. Nutr. 23:330–335PubMedGoogle Scholar
  3. Bohme C., Broer A., Munzinger M., Kowalczuk S., Rasko J.E., Lang F., Broer S. 2005. Characterization of mouse amino acid transporter B0AT1 (slc6a19). Biochem. J. 389:745–751PubMedCrossRefGoogle Scholar
  4. Broer A., Klingel K., Kowalczuk S., Rasko J.E., Cavanaugh J., Broer S. 2004. Molecular cloning of mouse amino acid transport system B0, a neutral amino acid transporter related to Hartnup disorder. J Biol Chem. 279:24467–24476PubMedCrossRefGoogle Scholar
  5. Broer A., Tietze N., Kowalczuk S., Chubb S., Munzinger M., Bak L.K., Broer S. 2006. The orphan transporter v7–3 (slc6a15) is a Na+-dependent neutral amino acid transporter (B0AT2). Biochem. J. 393:421–430PubMedCrossRefGoogle Scholar
  6. Camargo S.M., Makrides V., Virkki L.V., Forster I.C., Verrey F. 2005. Steady-state kinetic characterization of the mouse B(0)AT1 sodium-dependent neutral amino acid transporter. Pfluegers. Arch. 451:338–348CrossRefGoogle Scholar
  7. Cohen L.L., Huang K.C. 1964. Intestinal Transport Of Tryptophan And Its Derivatives. Am. J. Physiol. 206:647–652PubMedGoogle Scholar
  8. Crane R.K. 1965. Na+ -dependent transport in the intestine and other animal tissues. Fed. Proc. 24:1000–1006PubMedGoogle Scholar
  9. Curran P.F., Schultz S.G., Chez R.A., Fuisz R.E. 1967. Kinetic relations of the Na-amino acid interaction at the mucosal border of intestine. J. Gen. Physiol. 50:1261–1286PubMedCrossRefGoogle Scholar
  10. Cusworth D.C., Dent C.E. 1960. Renal clearances of amino acids in normal adults and in patients with aminoaciduria. Biochem. J. 74:550–561PubMedGoogle Scholar
  11. Doyle F.A., McGivan J.D. 1992. The bovine renal epithelial cell line NBL-1 expresses a broad specificity Na(+)-dependent neutral amino acid transport system (System Bo) similar to that in bovine renal brush border membrane vesicles. Biochim. Biophys. Acta. 1104:55–62PubMedCrossRefGoogle Scholar
  12. Evers J., Murer H., Kinne R. 1976. Phenylalanine uptake in isolated renal brush border vesicles. Biochim. Biophys. Acta. 426:598–615PubMedCrossRefGoogle Scholar
  13. Fass S.J., Hammerman M.R., Sacktor B. 1977. Transport of amino acids in renal brush border membrane vesicles. Uptake of the neutral amino acid L-alanine. J. Biol. Chem. 252:583–590PubMedGoogle Scholar
  14. Fox M., Thier S., Rosenberg L., Segal S. 1964. Ionic requirements for amino acid transport in the rat kidney cortex slice. I. Influence of extracellular ions. Biochim. Biophys. Acta. 79:167–176PubMedGoogle Scholar
  15. Gouaux E., Mackinnon R. 2005. Principles of selective ion transport in channels and pumps. Science 310:1461–1465PubMedCrossRefGoogle Scholar
  16. Hoyer J., Gogelein H. 1991. Sodium-alanine cotransport in renal proximal tubule cells investigated by whole-cell current recording. J. Gen. Physiol. 97:1073–1094PubMedCrossRefGoogle Scholar
  17. Kleta R., Romeo E., Ristic Z., Ohura T., Stuart C., Arcos-Burgos M., Dave M.H., Wagner C.A., Camargo S.R., Inoue S., et al. 2004. Mutations in SLC6A19, encoding B0AT1, cause Hartnup disorder. Nat. Genet. 36:999–1002PubMedCrossRefGoogle Scholar
  18. Kragh-Hansen U., Roigaard-Petersen H., Jacobsen C., Sheikh M.I. 1984. Renal transport of neutral amino acids. Tubular localization of Na+-dependent phenylalanine- and glucose-transport systems. Biochem. J. 220:15–24PubMedGoogle Scholar
  19. Mircheff A.K., Kippen I., Hirayama B., Wright E.M. 1982. Delineation of sodium-stimulated amino acid transport pathways in rabbit kidney brush border vesicles. J. Membrane. Biol. 64:113–122CrossRefGoogle Scholar
  20. Murer H., Sigrist-Nelson K., Hopfer U. 1975. On the mechanism of sugar and amino acid interaction in intestinal transport. J. Biol. Chem. 250:7392–7396PubMedGoogle Scholar
  21. Nelson N., Sacher A., Nelson H. 2002. The significance of molecular slips in transport systems. Nature Rev. Mol. Cell. Biol. 3:876–881CrossRefGoogle Scholar
  22. Palacin M., Nunes V., Font-Llitjos M., Jimenez-Vidal M., Fort J., Gasol E., Pineda M., Feliubadalo L., Chillaron J., Zorzano A. 2005. The genetics of heteromeric amino acid transporters. Physiology (Bethesda) 20:112–124Google Scholar
  23. Paterson J.Y., Sepulveda F.V., Smith M.W. 1979. Two-carrier influx of neutral amino acids into rabbit ileal mucosa. J. Physiol. 292:339–350PubMedGoogle Scholar
  24. Paterson J.Y., Sepulveda F.V., Smith M.W. 1981. Distinguishing transport systems having overlapping specificities for neutral and basic amino acids in the rabbit ileum. J. Physiol. 319:345–354PubMedGoogle Scholar
  25. Potter S.J., Lu A., Wilcken B., Green K., Rasko J.E. 2002. Hartnup disorder: polymorphisms identified in the neutral amino acid transporter SLC1A5. J. Inherit. Metab. Dis. 25:437–448PubMedCrossRefGoogle Scholar
  26. Preston R.L., Schaeffer J.F., Curran P.F. 1974. Structure-affinity relationships of substrates for the neutral amino acid transport system in rabbit ileum. J. Gen. Physiol. 64:443–467PubMedCrossRefGoogle Scholar
  27. Reiser S., Christiansen P.A. 1967. Intestinal transport of valine as affected by ionic environment. Am. J. Physiol. 212:1297–1302PubMedGoogle Scholar
  28. Samarzija I., Fromter E. 1982. Electrophysiological analysis of rat renal sugar and amino acid transport. III. Neutral amino acids. Pfluegers. Arch. 393:119–209Google Scholar
  29. Schultz S.G., Alvarez O.O., Curran P.F., Yu-Tu L. 1970. Dicarboxylic amino acid influx across brush border of rabbit ileum. Effects of amino acid charge on the sodium-amino acid interaction. J. Gen. Physiol. 56:621–639PubMedCrossRefGoogle Scholar
  30. Schultz S.G, Curran P.F. 1970. Coupled transport of sodium and organic solutes. Physiol. Rev. 50:637–718PubMedGoogle Scholar
  31. Schultz S.G., Curran P.F., Chez R.A., Fuisz R.E. 1967. Alanine and sodium fluxes across mucosal border of rabbit ileum. J. Gen. Physiol. 50:1241–1260PubMedCrossRefGoogle Scholar
  32. Scriver C.R., Mohyuddin F. 1968. Amino acid transport in kidney. Heterogeneity of alpha-aminoisobutyric uptake. J. Biol. Chem. 243:3207–3213PubMedGoogle Scholar
  33. Segal S., Crawhall J.C. 1968. Characteristics of cystine and cysteine transport in rat kidney cortex slices. Proc. Natl. Acad. Sci. USA 59:231–237PubMedCrossRefGoogle Scholar
  34. Seow H.F., Broer S., Broer A., Bailey C.G., Potter S.J., Cavanaugh J.A., Rasko J.E. 2004. Hartnup disorder is caused by mutations in the gene encoding the neutral amino acid transporter SLC6A19. Nat. Genet. 36:1003–1007PubMedCrossRefGoogle Scholar
  35. Stein W.D. 1986. Transport and diffusion across cell membranes. San Diego: Academic PressGoogle Scholar
  36. Takanaga H., Mackenzie B., Peng J.B., Hediger M.A. 2005. Characterization of a branched-chain amino-acid transporter SBAT1 (SLC6A15) that is expressed in human brain. Biochem. Biophys. Res. Commun. 337:892–900PubMedCrossRefGoogle Scholar
  37. Ullrich K.J., Rumrich G., Kloss S. 1974. Sodium dependence of the amino acid transport in the proximal convolution of the rat kidney. Pfluegers. Arch. 351:49–60CrossRefGoogle Scholar
  38. Yamashita A., Singh S.K., Kawate T., Jin Y., Gouaux E. 2005. Crystal structure of a bacterial homologue of Na(+)/Cl(−)-dependent neurotransmitter transporters. Nature 437:215–223PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Dept. of Biological SciencesUniversity of CalgaryAlbertaCanada
  2. 2.Research School of ChemistryAustralian National UniversityCanberraAustralia
  3. 3.School of Biochemistry & Molecular BiologyAustralian National University College of Science CanberraAustralia

Personalised recommendations