The Journal of Membrane Biology

, Volume 213, Issue 2, pp 89–100 | Cite as

Structure and Function of Sodium-coupled GABA and Glutamate Transporters



Neurotransmitter transporters are key elements in the termination of the synaptic actions of the neurotransmitters. They use the energy stored in the electrochemical ion gradients across the plasma membrane of neurons and glial cells for uphill transport of the transmitters into the cells surrounding the synapse. Therefore specific transporter inhibitors can potentially be used as novel drugs for neurological disease. Sodium-coupled neurotransmitter transporters belong to either of two distinct families. The glutamate transporters belong to the SLC1 family, whereas the transporters of the other neurotransmitters belong to the SLC6 family. An exciting and recent development is the emergence of the first high-resolution structures of archeal and bacterial members belonging to these two families. In this review the functional results on prototypes of the two families, the GABA transporter GAT-1 and the glutamate transporters GLT-1 and EAAC1, are described and discussed within the perspective provided by the novel structures.


GABA Glutamate Transporter Structure Function 


  1. Arriza J.L., Eliasof S., Kavanaugh M.P., Amara S.G. 1997. Excitatory amino acid transporter 5, a retinal glutamate transporter coupled to a chloride conductance. Proc. Natl. Acad. Sci. USA 94:4155–4160PubMedCrossRefGoogle Scholar
  2. Arriza J.L., Fairman W.A., Wadiche J.I., Murdoch G.H., Kavanaugh M.P., Amara S.G. 1994. Functional comparisons of three glutamate transporter subtypes cloned from human motor cortex. J. Neurosci. 14:5559–5569PubMedGoogle Scholar
  3. Bendahan A., Armon A., Madani N., Kavanaugh M.P., Kanner B.I. 2000. Arginine 447 plays a pivotal role in substrate interactions in a neuronal glutamate transporter. J. Biol. Chem. 275:37436–37442PubMedCrossRefGoogle Scholar
  4. Bennett E.R., Su H., Kanner B.I. 2000. Mutation of arginine 44 of GAT-1, a (Na(+) + Cl(−))-coupled gamma-aminobutyric acid transporter from rat brain, impairs net flux but not exchange. J. Biol. Chem. 275:34106–34113PubMedCrossRefGoogle Scholar
  5. Billups B., Rossi D., Attwell D. 1996. Anion conductance behavior of the glutamate uptake carrier in salamander retinal glial cells. J. Neurosci. 16:6722–6731PubMedGoogle Scholar
  6. Bismuth Y., Kavanaugh M.P., Kanner B.I. 1997. Tyrosine 140 of the gammaaminobutyric acid transporter GAT-1 plays a critical role in neurotransmitter recognition. J. Biol. Chem. 272:16096–16102PubMedCrossRefGoogle Scholar
  7. Borre L., Kanner B.I. 2001. Coupled, but not uncoupled, fluxes in a neuronal glutamate transporter can be activated by lithium ions. J. Biol. Chem. 276:40396–40401PubMedCrossRefGoogle Scholar
  8. Borre L., Kanner B.I. 2004. Arginine 445 controls the coupling between glutamate and cations in the neuronal transporter EAAC-1. J. Biol. Chem. 279:2513–2519PubMedCrossRefGoogle Scholar
  9. Borre L., Kavanaugh M.P., Kanner B.I. 2002. Dynamic equilibrium between coupled and uncoupled modes of a neuronal glutamate transporter. J. Biol. Chem. 277:13501–13507PubMedCrossRefGoogle Scholar
  10. Brew H., Attwell D. 1987. Electrogenic glutamate uptake is a major current carrier in the membrane of axolotl retinal glial cells. Nature 327:707–709PubMedCrossRefGoogle Scholar
  11. Brocke L., Bendahan A., Grunewald M., Kanner B.I. 2002. Proximity of two oppositely oriented re-entrant loops in the glutamate transporter GLT-1 identified by paired cysteine mutagenesis. J. Biol. Chem. 277:3985–3992PubMedCrossRefGoogle Scholar
  12. Chen J.G., Liu-Chen S., Rudnick G. 1998. Determination of external loop topology in the serotonin transporter by site-directed chemical labeling. J. Biol. Chem. 273:12675–12681PubMedCrossRefGoogle Scholar
  13. Eliasof S., Jahr C.E. 1996. Retinal glial cell glutamate transporter is coupled to an anionic conductance. Proc. Natl. Acad. Sci. USA 93:4153–4158PubMedCrossRefGoogle Scholar
  14. Fairman W.A., Vandenberg R.J., Arriza J.L., Kavanaugh M.P., Amara S.G. 1995. An excitatory amino-acid transporter with properties of a ligand-gated chloride channel. Nature 375:599–603PubMedCrossRefGoogle Scholar
  15. Giros B., Jaber M., Jones S.R., Wightman R.M., Caron M.G. 1996. Hyperlocomotion and indifference to cocaine and amphetamine in mice lacking the dopamine transporter. Nature 379:606–612PubMedCrossRefGoogle Scholar
  16. Golovanevsky V., Kanner B.I. 1999. The reactivity of the gamma-aminobutyric acid transporter GAT-1 toward sulfhydryl reagents is conformationally sensitive. Identification of a major target residue. J. Biol. Chem. 274:23020–23026PubMedCrossRefGoogle Scholar
  17. Grewer C., Watzke N., Rauen T., Bicho A. 2003. Is the glutamate residue Glu-373 the proton acceptor of the excitatory amino acid carrier 1? J. Biol. Chem. 278:2585–92PubMedCrossRefGoogle Scholar
  18. Grunewald M., Bendahan A., Kanner B.I. 1998. Biotinylation of single cysteine mutants of the glutamate transporter GLT-1 from rat brain reveals its unusual topology. Neuron. 21:623–632PubMedCrossRefGoogle Scholar
  19. Grunewald M., Kanner B. 1995. Conformational changes monitored on the glutamate transporter GLT-1 indicate the existence of two neurotransmitter-bound states. J. Biol. Chem. 270:17017–17024PubMedCrossRefGoogle Scholar
  20. Grunewald M., Kanner B.I. 2000. The accessibility of a novel re-entrant loop of the glutamate transporter GLT-1 is restricted by its substrate. J. Biol. Chem. 275:9684–9689PubMedCrossRefGoogle Scholar
  21. Grunewald M., Menaker D., Kanner B.I. 2002. Cysteine-scanning mutagenesis reveals a conformationally sensitive re-entrant pore-loop in the glutamate transporter GLT-1. J. Biol. Chem. 277:26074–26080PubMedCrossRefGoogle Scholar
  22. Guastella J., Nelson N., Nelson H., Czyzyk L., Keynan S., Miedel M.C., Davidson N., Lester H.A., Kanner B.I. 1990. Cloning and expression of a rat brain GABA transporter. Science 249:1303–1306PubMedCrossRefGoogle Scholar
  23. Hilgemann D.W., Lu C.C. 1999. GAT1 (GABA:Na+:Cl−) cotransport function. Database reconstruction with an alternating access model. J. Gen. Physiol. 114:459–475PubMedCrossRefGoogle Scholar
  24. Jiang Y., Lee A., Chen J., Cadene M., Chait B.T., MacKinnon R. 2002. The open pore conformation of potassium channels. Nature 417:523–526PubMedCrossRefGoogle Scholar
  25. Kanai Y., Hediger M.A. 1992. Primary structure and functional characterization of a high-affinity glutamate transporter. Nature 360:467–471PubMedCrossRefGoogle Scholar
  26. Kanner B.I. 1978. Active transport of gamma-aminobutyric acid by membrane vesicles isolated from rat brain. Biochemistry 17:1207–1211PubMedCrossRefGoogle Scholar
  27. Kanner B.I. 1983. Bioenergetics of neurotransmitter transport. Biochim. Biophys. Acta. 726:293–316PubMedGoogle Scholar
  28. Kanner B.I. 1989. Ion-coupled neurotransmitter transport. Curr. Opin. Cell Biol. 1:735–738PubMedCrossRefGoogle Scholar
  29. Kanner B.I. 2003. Transmembrane domain I of the gamma-aminobutyric acid transporter GAT-1 plays a crucial role in the transition between cation leak and transport modes. J. Biol. Chem. 278:3705–3712PubMedCrossRefGoogle Scholar
  30. Kanner B.I. 2005. Molecular physiology: intimate contact enables transport. Nature 437:203–205PubMedCrossRefGoogle Scholar
  31. Kanner B.I., Bendahan A. 1982. Binding order of substrates to the sodium and potassium ion coupled L-glutamic acid transporter from rat brain. Biochemistry 21:6327–6330PubMedCrossRefGoogle Scholar
  32. Kanner B.I., Borre L. 2002. The dual-function glutamate transporters: structure and molecular characterisation of the substrate-binding sites. Biochim. Biophys. Acta. 1555:92–95PubMedCrossRefGoogle Scholar
  33. Kanner B.I., Marva E. 1982. Efflux of L-glutamate by synaptic plasma membrane vesicles isolated from rat brain. Biochemistry 21:3143–3147PubMedCrossRefGoogle Scholar
  34. Kanner B.I., Schuldiner S. 1987. Mechanism of transport and storage of neurotransmitters. CRC Crit. Rev. Biochem. 22:1–38PubMedGoogle Scholar
  35. Kanner B.I., Sharon I. 1978. Active transport of L-glutamate by membrane vesicles isolated from rat brain. Biochemistry 17:3949–3953PubMedCrossRefGoogle Scholar
  36. Kavanaugh M.P., Arriza J.L., North R.A., Amara S.G. 1992. Electrogenic uptake of gamma-aminobutyric acid by a cloned transporter expressed in Xenopus oocytes. J. Biol. Chem. 267:22007–22009PubMedGoogle Scholar
  37. Kavanaugh M.P., Bendahan A., Zerangue N., Zhang Y., Kanner B.I. 1997. Mutation of an amino acid residue influencing potassium coupling in the glutamate transporter GLT-1 induces obligate exchange. J. Biol. Chem. 272:1703–1708PubMedCrossRefGoogle Scholar
  38. Keynan S., Kanner B.I. 1988. gamma-Aminobutyric acid transport in reconstituted preparations from rat brain: coupled sodium and chloride fluxes. Biochemistry 27:12–17PubMedCrossRefGoogle Scholar
  39. Krause S., Schwarz W. 2005. Indentification and selective inhibition of the channel mode of the neuronal GABA transporter 1. Mol. Pharmacol. 68:1728–1735PubMedGoogle Scholar
  40. Levy L.M., Warr O., Attwell D. 1998. Stoichiometry of the glial glutamate transporter GLT-1 expressed inducibly in a Chinese hamster ovary cell line selected for low endogenous Na+-dependent glutamate uptake. J. Neurosci. 18:9620–9628PubMedGoogle Scholar
  41. Loo D.D., Eskandari S., Boorer K.J., Sarkar H.K., Wright E.M. 2000. Role of Cl in electrogenic Na+-coupled cotransporters GAT1 and SGLT1. J. Biol. Chem. 275:37414–37422PubMedCrossRefGoogle Scholar
  42. Lu C.C., Hilgemann D.W. 1999a. GAT1 (GABA:Na+:Cl) cotransport function. Kinetic studies in giant Xenopus oocyte membrane patches. J. Gen. Physiol. 114:445–457CrossRefGoogle Scholar
  43. Lu C.C., Hilgemann D.W. 1999b. GAT1 (GABA:Na+:Cl) cotransport function. Steady state studies in giant Xenopus oocyte membrane patches. J. Gen. Physiol. 114:429–444CrossRefGoogle Scholar
  44. Mabjeesh N.J., Kanner B.I. 1993. The substrates of a sodium- and chloride-coupled gamma-aminobutyric acid transporter protect multiple sites throughout the protein against proteolytic cleavage. Biochemistry 32:8540–8546PubMedCrossRefGoogle Scholar
  45. MacAulay N., Bendahan A., Loland C.J., Zeuthen T., Kanner B.I., Gether U. 2001. Engineered Zn(2+) switches in the gamma-aminobutyric acid (GABA) transporter-1. Differential effects on GABA uptake and currents. J. Biol. Chem. 276:40476–40485PubMedCrossRefGoogle Scholar
  46. MacAulay N., Zeuthen T., Gether U. 2002. Conformational basis for the Li(+) induced leak current in the rat gamma-aminobutyric acid (GABA) transporter J. Physiol. 544:447–458PubMedCrossRefGoogle Scholar
  47. Mager S., Kleinberger-Doron N., Keshet G.I., Davidson N., Kanner B.I., Lester H.A. 1996. Ion binding and permeation at the GABA transporter GAT1. J. Neurosci. 16:5405–5414PubMedGoogle Scholar
  48. Mager S., Min C., Henry D.J., Chavkin C., Hoffman B.J., Davidson N., Lester H.A. 1994. Conducting states of a mammalian serotonin transporter. Neuron 12:845–859PubMedCrossRefGoogle Scholar
  49. Mager S., Naeve J., Quick M., Labarca C., Davidson N., Lester H.A. 1993. Steady states, charge movements, and rates for a cloned GABA transporter expressed in Xenopus oocytes. Neuron 10:177–188PubMedCrossRefGoogle Scholar
  50. Melamed N., Kanner B.I. 2004. Transmembrane domains I and II of the gamma aminobutyric acid transporter GAT-4 contain molecular determinants of substrate specificity. Mol. Pharmacol. 65:1452–1461PubMedCrossRefGoogle Scholar
  51. Menaker D., Bendahan A., Kanner B.I. 2006. The substrate specificity of a neuronal glutamate transporter is determined by the nature of the coupling ion. J. Neurochem. 99:20–28PubMedCrossRefGoogle Scholar
  52. Nelson N. 1998. The family of Na+/Cl neurotransmitter transporters. J. Neurochem. 71:1785–1803PubMedCrossRefGoogle Scholar
  53. Nelson P.J., Rudnick G. 1979. Coupling between platelet 5-hydroxytryptamine and potassium transport. J. Biol. Chem. 254:10084–10089PubMedGoogle Scholar
  54. Ogawa H., Toyoshima C. 2002. Homology modeling of the cation binding sites of Na+K+-ATPase. Proc. Natl. Acad. Sci. USA 99:15977–15982PubMedCrossRefGoogle Scholar
  55. Pantanowitz S., Bendahan A., Kanner B.I. 1993. Only one of the charged amino acids located in the transmembrane alpha-helices of the gamma-aminobutyric acid transporter (subtype A) is essential for its activity. J. Biol. Chem. 268:32225PubMedGoogle Scholar
  56. Pines G., Danbolt N.C., Bjoras M., Zhang Y., Bendahan A., Eide L., Koepsell H., Storm-Mathisen J., Seeberg E., Kanner B.I. 1992. Cloning and expression of a rat brain L-glutamate transporter. Nature 360:464–467PubMedCrossRefGoogle Scholar
  57. Pines G., Kanner B.I. 1990. Counterflow of L-glutamate in plasma membrane vesicles and reconstituted preparations from rat brain. Biochemistry 29:1120914PubMedCrossRefGoogle Scholar
  58. Radian R., Bendahan A., Kanner B.I. 1986. Purification and identification of the functional sodium- and chloride-coupled gamma-aminobutyric acid transport glycoprotein from rat brain. J. Biol. Chem. 261:15437–15441PubMedGoogle Scholar
  59. Rosental N., Bendahan A., Kanner B.I. 2006. Multiple consequences of mutating two conserved Beta-bridge forming residues in the translocation cycle of a neuronal glutamate transporter. J. Biol. Chem. 281:27905–27918PubMedCrossRefGoogle Scholar
  60. Ryan R.M., Mitrovic A.D., Vandenberg R.J. 2004. The chloride permeation pathway of a glutamate transporter and its proximity to the glutamate translocation pathway. J. Biol. Chem. 279:20742–20751PubMedCrossRefGoogle Scholar
  61. Ryan R.M., Vandenberg R.J. 2002. Distinct conformational states mediate the transport and anion channel properties of the glutamate transporter EAAT-1. J. Biol. Chem. 277:13494–13500PubMedCrossRefGoogle Scholar
  62. Seal R.P., Shigeri Y., Eliasof S., Leighton B.H., Amara S.G. 2001. Sulfhydryl modification of V449C in the glutamate transporter EAAT1 abolishes substrate transport but not the substrate-gated anion conductance. Proc. Natl. Acad. Sci. USA 98:15324–15329PubMedCrossRefGoogle Scholar
  63. Shachnai L., Shimamoto K., Kanner B.I. 2005. Sulfhydryl modification of cysteine mutants of a neuronal glutamate transporter reveals an inverse relationship between sodium dependent conformational changes and the glutamate-gated anion conductance. Neuropharmacology 49:862–871PubMedCrossRefGoogle Scholar
  64. Slotboom D.J., Sobczak I., Konings W.N., Lolkema J.S. 1999. A conserved serine-rich stretch in the glutamate transporter family forms a substrate-sensitive re-entrant loop. Proc. Natl. Acad. Sci. USA 96:14282–14287PubMedCrossRefGoogle Scholar
  65. Storck T., Schulte S., Hofmann K., Stoffel W. 1992. Structure, expression, and functional analysis of a Na(+)-dependent glutamate/aspartate transporter from rat brain. Proc. Natl. Acad. Sci. USA 89:10955–10959PubMedCrossRefGoogle Scholar
  66. Szatkowski M., Barbour B., Attwell D. 1990. Non-vesicular release of glutamate from glial cells by reversed electrogenic glutamate uptake. Nature 348:443–446PubMedCrossRefGoogle Scholar
  67. Tanaka K., Watase K., Manabe T., Yamada K., Watanabe M., Takahashi K., Iwama H., Nishikawa T., Ichihara N., Kikuchi T., Okuyama S., Kawashima N., Hori S., Takimoto M., Wada K. 1997. Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT-1. Science 276:1699–16702PubMedCrossRefGoogle Scholar
  68. Tao Z., Zhang Z., Grewer C. 2006. Neutralization of the aspartic acid residue Asp 367, but not Asp-454, inhibits binding of Na+ to the glutamate-free form and cycling of the glutamate transporter EAAC1. J. Biol. Chem. 281:10263–10272PubMedCrossRefGoogle Scholar
  69. Toyoshima C., Nakasako M., Nomura H., Ogawa H. 2000. Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6 A resolution. Nature 405:647–655PubMedCrossRefGoogle Scholar
  70. Wadiche J.I., Amara S.G., Kavanaugh M.P. 1995a. Ion fluxes associated with excitatory amino acid transport. Neuron 15:721–728CrossRefGoogle Scholar
  71. Wadiche J.I., Arriza J.L., Amara S.G., Kavanaugh M.P. 1995b. Kinetics of a human glutamate transporter. Neuron 14:1019–1027CrossRefGoogle Scholar
  72. Weinglass A.B., Smirnova I.N., Kaback H.R. 2001. Engineering conformational flexibility in the lactose permease of Escherichia coli: use of glycine-scanning mutagenesis to rescue mutant Glu325 → Asp. Biochemistry 40:769–776PubMedCrossRefGoogle Scholar
  73. Yamashita A., Singh S.K., Kawate T., Jin Y., Gouaux E. 2005. Crystal structure of a bacterial homologue of Na+/Cldependent neurotransmitter transporters. Nature 437:215–223PubMedCrossRefGoogle Scholar
  74. Yernool D., Boudker O., Jin Y., Gouaux E. 2004. Structure of a glutamate transporter homologue from Pyrococcus horikoshii. Nature 431:811–818PubMedCrossRefGoogle Scholar
  75. Zarbiv R., Grunewald M., Kavanaugh M.P., Kanner B.I. 1998. Cysteine scanning of the surroundings of an alkali-ion binding site of the glutamate transporter GLT-1 reveals a conformationally sensitive residue. J. Biol. Chem. 273:14231–14237PubMedCrossRefGoogle Scholar
  76. Zerangue N., Kavanaugh M.P. 1996. Flux coupling in a neuronal glutamate transporter. Nature 383:634–637PubMedCrossRefGoogle Scholar
  77. Zhang Y., Bendahan A., Zarbiv R., Kavanaugh M.P., Kanner B.I. 1998. Molecular determinant of ion selectivity of a (Na+ + K+)-coupled rat brain glutamate transporter. Proc. Natl. Acad. Sci. USA 95:751–755PubMedCrossRefGoogle Scholar
  78. Zhang Y., Kanner B.I. 1999. Two serine residues of the glutamate transporter GLT-1 are crucial for coupling the fluxes of sodium and the neurotransmitter. Proc. Natl. Acad. Sci. USA 96:1710–1715PubMedCrossRefGoogle Scholar
  79. Zhou Y., Bennett E.R., Kanner B.I. 2004. The aqueous accessibility in the external half of transmembrane domain I of the GABA transporter GAT-1 is modulated by its ligands. J. Biol. Chem. 279:13800–13808PubMedCrossRefGoogle Scholar
  80. Zhou Y., Kanner B.I. 2005. Transporter-associated currents in the gamma aminobutyric acid transporter GAT-1 are conditionally impaired by mutations of a conserved glycine residue. J. Biol. Chem. 280:20316–20324PubMedCrossRefGoogle Scholar
  81. Zhou Y., Zomot E., Kanner B.I. 2006. Identification of a lithium interaction site in the GABA transporter GAT-1. J. Biol. Chem. 281:22092–22099PubMedCrossRefGoogle Scholar
  82. Zomot E., Kanner B.I. 2003. The interaction of the gamma-aminobutyric acid transporter GAT-1 with the neurotransmitter is selectively impaired by sulfhydryl modification of a conformationally sensitive cysteine residue engineered into extracellular loop IV. J. Biol. Chem. 278:42950–42958PubMedCrossRefGoogle Scholar
  83. Zomot E., Zhou Y., Kanner B.I. 2005. Proximity of transmembrane domains 1 and 3 of the gamma-aminobutyric acid transporter GAT-1 inferred from paired cysteine mutagenesis. J. Biol. Chem. 280:25512–25516PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Dept. of BiochemistryHebrew University, Hadassah Medical SchoolJerusalemIsrael

Personalised recommendations