The Journal of Membrane Biology

, Volume 212, Issue 2, pp 83–91 | Cite as

Molecular Mechanisms of Urea Transport in Plants



Urea is a soil nitrogen form available to plant roots and a secondary nitrogen metabolite liberated in plant cells. Based on growth complementation of yeast mutants and “in-silico analysis”, two plant families have been identified and partially characterized that mediate membrane transport of urea in heterologous expression systems. AtDUR3 is a single Arabidopsis gene belonging to the sodium solute symporter family that cotransports urea with protons at high affinity, while members of the tonoplast intrinsic protein (TIP) subfamily of aquaporins transport urea in a channel-like manner. The following review summarizes current knowledge on the membrane localization, energetization and regulation of these two types of urea transporters and discusses their possible physiological roles in planta.


Water channel Sodium solute symporter Plasma membrane Tonoplast transport Urease Ornithine cycle Arabidopsis thaliana 


  1. Bailey C.J., D. Boulter 1971. Urease, a typical seed protein of the Leguminosae. In: Chemotaxonomy of the Leguminosae. J. Harborne, D. Boulter, B. Turner, eds. Academic Press, New York pp 485–502Google Scholar
  2. Barkla B.J., R. Vera-Estrella, O. Pantoja, H.H. Kirch, H.J. Bohnert 1999. Aquaporin localization – how valid are the TIP and PIP labels?. Trends Plant Sci. 4:86–88PubMedCrossRefGoogle Scholar
  3. Beitz E., B. Wu, L.M. Holm, J.F. Schultz, T. Zeuthen 2006. Point mutations in the aromatic/arginine region in aquaporin 1 allow passage of urea, glycerol, ammonia and protons. Proc. Natl. Acad. Sci. USA 103:269–274PubMedCrossRefGoogle Scholar
  4. Bradley D.P., M.A. Morgan, P. O´Toole 1989. Uptake and apparent utilization of urea and ammonium nitrate in wheat seedlings. Fertil. Res. 20:41–49CrossRefGoogle Scholar
  5. Carter C., S. Pan, J. Zouhar, E.L. Avila, T. Girke, N.V. Raikhel 2004. The vegetative vacuole proteome of Arabidopsis thaliana reveals predicted and unexpected proteins. Plant Cell. 16:3285–3303PubMedCrossRefGoogle Scholar
  6. Cho B.C., M.G. Park, J.H. Shim, F. Azam 1996. Significance of bacteria in urea dynamics in coastal surface waters. Mar. Ecol. Prog. Ser. 142:19–26Google Scholar
  7. Cooper T.G., R. Sumrada 1975. Urea transport in Saccharomyces cerevisiae. J. Bacteriol. 121:571–576PubMedGoogle Scholar
  8. Dalal R.C. 1985. Distribution, salinity, kinetic and thermodynamic characteristics of urease activity in a vertisol profile. Aust. J. Soil Res. 23:49–60CrossRefGoogle Scholar
  9. Daniels M.J., F. Chaumont, T.E. Mirkov, M.J. Chrispeels 1996. Characterization of a new vacuolar membrane aquaporin sensitive to mercury at a unique site. Plant Cell. 8:587–599PubMedCrossRefGoogle Scholar
  10. Eckert M., A. Biela, F. Siefritz, R. Kaldenhoff 1999. New aspects of plant aquaporin regulation and specificity. J. Exp. Bot. 50:1541–1545CrossRefGoogle Scholar
  11. ElBerry H.M., M.L. Majumdar, T.S. Cunningham, R.A. Sumrada, T.G. Cooper 1993. Regulation of the urea active transporter gene (DUR3) in Saccharomyces cerevisiae. J. Bacteriol. 175:4688–4698PubMedGoogle Scholar
  12. Faye L., J.S. Greenwood, M. Chrispeels 1986. Urease in jack bean seeds is a cytosolic protein. Planta 168:579–585CrossRefGoogle Scholar
  13. Fu D., A. Libson, L.J.W. Miercke, C. Weitzman, P. Nollert, J. Krucinski, R.M. Stroud 2000. Structure of a glycerol-conducting channel and the basis for its selectivity. Science 290:481–486PubMedCrossRefGoogle Scholar
  14. Galluci E., C. Micelli, C. Lippe 1971. Non-electrolyte permeability across thin lipid membranes. Arch. Int. Physiol. Biochem. 79:881–887Google Scholar
  15. Gaudin R., J. Dupuyu, P. Bournat 1987. Suivi du contenue en azote de la solution du sol d’une rizière après placement d’urée. Agron. Trop. 42:13–19Google Scholar
  16. Gazzarrini S., L. Lejay, A. Gojon, O. Ninnemann, W.B. Frommer, N. von Wirén 1999. Three functional transporters for constitutive, diurnally regulated, and starvation-induced uptake of ammonium into Arabidopsis roots. Plant Cell 11:937–947PubMedCrossRefGoogle Scholar
  17. Gerbeau P., J. Guclu, P. Ripoche, C. Maurel 1999. Aquaporin Nt-TIPa can account for the high permeability of tobacco cell vacuolar membrane to small neutral solutes. Plant J. 18:577–587PubMedCrossRefGoogle Scholar
  18. Holland M.A., J.D. Griffin, L.E. Meyer-Bothling, J.C. Polacco 1987. Developmental genetics of the soybean urease isozymes. Dev. Genet. 8:375–387CrossRefGoogle Scholar
  19. Ishibashi K., S. Sasaki, K. Fushimi, S. Uchida, M. Kuwahara, H. Saito, T. Furukawa, K. Nakajima, Y. Yamaguchi, T. Gojobori, F. Marumo 1994. Molecular cloning and expression of a member of the aquaporin family with permeability to glycerol and urea in addition to water expressed at the basolateral membrane of kidney collecting duct cells. Proc. Natl. Acad. Sci. USA 91:6269–6273PubMedCrossRefGoogle Scholar
  20. Johanson U., M. Karlsson, I. Johansson, S. Gustavsson, S. Sjovall, L. Fraysse, A.R. Weig, P. Kjellbom 2001. The complete set of genes encoding major intrinsic proteins in Arabidopsis provides a framework for a new nomenclature for major intrinsic proteins in plants. Plant Physiol. 126:1358–1369PubMedCrossRefGoogle Scholar
  21. Jung H. 2002. The sodium/substrate symporter family: structural and functional features. FEBS Lett. 529:73–77PubMedCrossRefGoogle Scholar
  22. Kerr P.S., D.G. Bievins, B.J. Rapp, D.D. Randell 1983. Soybean leaf urease: comparison with seed urease. Physiol. Plant. 57:339–342CrossRefGoogle Scholar
  23. King S.L., D. Kozono, P. Agre 2004. From structure to disease: The evolving tale of aquaporin biology. Nat. Rev. Mol. Cell Biol. 5:687–698PubMedCrossRefGoogle Scholar
  24. Klebl F., M. Wolf, N. Sauer 2003. A defect in the yeast plasma membrane urea transporter Dur3p is complemented by CpNIP1, a Nod26-like protein from zucchini (Cucurbita pepo L.), and by Arabidopsis thaliana [delta]-TIP or [gamma]-TIP. FEBS Lett. 547:69–74PubMedCrossRefGoogle Scholar
  25. Krogmeier M.J., G.W. McCarty, J.M. Bremner 1989. Phytotoxicity of foliar-applied urea. Proc. Natl. Acad. Sci. USA 86:8189–8191PubMedCrossRefGoogle Scholar
  26. Lejay L., P. Tillard, M. Lepetit, F.D. Olive, S. Filleur, F. Daniel-Vedele, A. Gojon 1999. Molecular and functional regulation of two NO3- uptake systems by N- and C-status of Arabidopsis plants. Plant J. 18:509–519PubMedCrossRefGoogle Scholar
  27. Leung D.W., D.D.F. Loo, B.A. Hirayama, T. Zeuthen, E.M. Wright 2000. Urea transport by cotransporters. J. Physiol. 528:251–257PubMedCrossRefGoogle Scholar
  28. Liu L.H., U. Ludewig, W.B. Frommer, N. von Wirén 2003a. AtDUR3 encodes a new type of high-affinity urea/H+ symporter in Arabidopsis. Plant Cell 15:790–800CrossRefGoogle Scholar
  29. Liu L.H., U. Ludewig, B. Gassert, W.B. Frommer, N. von Wirén 2003b. Urea transport by nitrogen-regulated tonoplast intrinsic proteins in Arabidopsis. Plant Physiol. 133:1220–1228CrossRefGoogle Scholar
  30. Ludevid D., H. Höfte, E. Himelblau, M.J. Chrispeels 1992. The expression pattern of the tonoplast intrinsic protein χ-TIP in Arabidopsis thaliana is correlated with cell enlargement. Plant Physiol. 100:1627–1633CrossRefGoogle Scholar
  31. Ma S., T.M. Quist, A. Ulanov, R. Joly, H.J. Bohnert 2004. Loss of TIP1;1 aquaporin in Arabidopsis leads to cell and plant death. Plant J. 40:845–859PubMedCrossRefGoogle Scholar
  32. Marmagne A., M.A. Rouet, M. Ferro, N. Rolland, C. Alcon, J. Joyard, J. Garin, H. Barbier-Brygoo, G. Ephritikhine 2004. Identification of new intrinsic proteins in Arabidopsis plasma membrane proteome. Mol. Cell Proteomics 3:675–691PubMedCrossRefGoogle Scholar
  33. Marschner H. 1995. Mineral nutrition of higher plants. Second ed. Academic Press, London, UKGoogle Scholar
  34. Masclaux C., M.H. Valadier, N. Brugiere, J.F. Morot-Gaudry, B. Hirel 2000. Characterization of the sink/source transition in tobacco (Nicotiana tabacum L.) shoots in relation to nitrogen management and leaf senescence. Planta 211:510–518PubMedCrossRefGoogle Scholar
  35. Mitamura O., M. Kawashima, H. Maeda 2000a. Urea degradation by picophytoplankton in the euphotic zone of Lake Biwa. Limnology 1:19–26CrossRefGoogle Scholar
  36. Mitamura O., Y. Seike, K. Kondo, N. Ishida, M. Okumura 2000b. Urea decomposing activity of fractionated brackish phytoplankton in Lake Nakaumi. Limnology 1:75–80CrossRefGoogle Scholar
  37. Polacco J.C., M.A. Holland 1993. Roles of urease in plant cells. Int. Rev. Cytology - Survey Cell Biol. 145:65–103Google Scholar
  38. Quigley F., J.M. Rosenberg, Y. Shachar-Hill, H.J. Bohnert 2001. From genome to function: the Arabidopsis aquaporins. Genome Biol. 3:17CrossRefGoogle Scholar
  39. Reizer J., A. Reizer, J. Saier 1994. A functional superfamily of sodium/solute symporters. Biochim. Biophys. Acta – Rev. Biomembr. 1197:133–166Google Scholar
  40. Saier M.H., Jr. 2000. A functional-phylogenetic classification system for transmembrane solute transporters. Microbiol. Mol. Biol. Rev. 64:354–411PubMedCrossRefGoogle Scholar
  41. Saito C., T. Ueda, H. Abe, Y. Wada, T. Kuroiwa, A. Hisada, M. Furuya, A. Nakano 2002. A complex and mobile structure forms a distinct subregion within the continuous vacuolar membrane in young cotyledons of Arabidopsis. Plant J. 29:245–255PubMedCrossRefGoogle Scholar
  42. Schmid M., T.S. Davison, S.R. Henz, U.J. Pape, M. Demar, M. Vingron, B. Schölkopf, D. Weigel, J.U. Lohmann 2005. A gene expression map of Arabidopsis thaliana development. Nat. Genet. 37:501–506PubMedCrossRefGoogle Scholar
  43. Schwacke R., A. Schneider, E. van der Graaff, K. Fischer, E. Catoni, M. Desimone, W.B. Frommer, U.I. Flugge, R. Kunze 2003. ARAMEMNON, a novel database for Arabidopsis integral membrane proteins. Plant Physiol 131:16–26PubMedCrossRefGoogle Scholar
  44. Stebbins N.E., J.C. Polacco 1995. Urease is not essential for ureide degradation in soybean. Plant Physiol. 109:169–175PubMedGoogle Scholar
  45. Sui H., B.-G. Han, J.K. Lee, P. Walian, B.K. Jap 2001. Structural basis of water-specific transport through the AQP1 water channel. Nature 414:872–878PubMedCrossRefGoogle Scholar
  46. Sumrada R., M. Gorski, T. Cooper 1976. Urea transport-defective strains of Saccharomyces cerevisiae. J. Bacteriol. 125:1048–1056PubMedGoogle Scholar
  47. Thomas D., P. Bron, G. Ranchy, L. Duchesne, A. Cavalier, J.-P. Rolland, C. Raguénès-Nicol, J.-F. Hubert, W. Haase, C. Delamarche 2005. Aquaglyceroporins, one channel for two molecules. Biochim. Biophys. Acta- Bioenergetics 1555:181–186CrossRefGoogle Scholar
  48. Tsukaguchi H., C. Shayakul, U.V. Berger, B. Mackenzie, S. Devidas, W.B. Guggino, A.N. van Hoek, M.A. Hediger 1998. Molecular characterization of a broad selectivity neutral solute channel. J. Biol. Chem. 273:24737–24743PubMedCrossRefGoogle Scholar
  49. Turk E., E.M. Wright 1997. Membrane topology motifs in the SGLT cotransporter family. J. Membr. Biol. 159:1–20PubMedCrossRefGoogle Scholar
  50. Tyerman S., H. Bohnert, C. Maurel, E. Steudle, J. Smith 1999. Plant aquaporins: their molecular biology, biophysics and significance for plant water relations. J. Exp. Bot. 50:1055–1071CrossRefGoogle Scholar
  51. Valladares A., M.L. Montesinos, A. Herrero, E. Flores 2002. An ABC-type, high-affinity urea permease identified in cyanobacteria. Mol. Microbiol. 43:703–715PubMedCrossRefGoogle Scholar
  52. Wallace I.S., D.M. Roberts 2004. Homology modeling of representative subfamilies of Arabidopsis major intrinsic proteins. Classification based on the aromatic/arginine selectivity filter. Plant Physiol. 135:1059–1068PubMedCrossRefGoogle Scholar
  53. Watson C.J., H. Miller, P. Poland, D.J. Kilpatrick, M.D.B. Allen, M.K. Garret, C.B. Christianson 1994. Soil properties and the ability of the urease inhibitor N-(N-Butyl)thiophosphoric triamide (NBTPT) to reduce ammonia volatilization from surface-applied urea. Soil Biol. Biochem. 26:1165–1171CrossRefGoogle Scholar
  54. Weig A., C. Deswarte, M.J. Chrispeels 1997. The major intrinsic protein family of Arabidopsis has 23 members that form three distinct groups with functional aquaporins in each group. Plant Physiol. 114:1347–1357PubMedCrossRefGoogle Scholar
  55. Wilson M.R., S.I. O´Donoghue, N.A. Walker 1988. The transport and metabolism of urea in Chara australis: III. Two specific transport systems. J. Exp. Bot. 39:763–774CrossRefGoogle Scholar
  56. Wilson M.R., N.A. Walker 1988. The transport and metabolism of urea in Chara australis: I. Passive diffusion, specific transport and metabolism of urea and methylurea. J. Exp. Bot. 39:739–751CrossRefGoogle Scholar
  57. Witte C.P., S.A. Tiller, M.A. Taylor, H.V. Davies 2002. Leaf urea metabolism in potato. Urease activity profile and patterns of recovery and distribution of 15N after foliar urea application in wild-type and urease-antisense transgenics. Plant Physiol. 128:1129–1136PubMedCrossRefGoogle Scholar
  58. Xu X., L. Zhou, O. Van Cleemput, Z. Wang 2000. Fate of urea-15N in a soil-wheat system as influenced by urease inhibitor hydroquinone and nitrification inhibitor dicyandiamide. Plant Soil 220:261–270CrossRefGoogle Scholar
  59. You G., C.P. Smith, Y. Kanai, W.S. Lee, M. Stelzner, M.A. Hediger 1993. Cloning and characterization of the vasopressin-regulated urea transporter. Nature 365:844–847PubMedCrossRefGoogle Scholar
  60. Zardoya R. 2005. Phylogeny and evolution of the major intrinsic protein family. Biol Cell 97:397–414PubMedGoogle Scholar
  61. Zonia L.E., N.E. Stebbins, J.C. Polacco 1995. Essential role of urease in germination of nitrogen-limited Arabidopsis thaliana seeds. Plant Physiol 107:1097–1103PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  1. 1.Institut für Pflanzenernährung (330)Universität HohenheimStuttgartGermany

Personalised recommendations