The Journal of Membrane Biology

, Volume 210, Issue 3, pp 161–172 | Cite as

Intracellular Monovalent Ions as Second Messengers

Topical Review

Abstract

It is generally accepted that electrochemical gradients of monovalent ions across the plasma membrane, created by the coupled function of pumps, carriers and channels, are involved in the maintenance of resting and action membrane potential, cell volume adjustment, intracellular Ca2+ handling and accumulation of glucose, amino acids, nucleotides and other precursors of macromolecular synthesis. In the present review, we summarize data showing that side-by-side with these classic functions, modulation of the intracellular concentration of monovalent ions in a physiologically reasonable range is sufficient to trigger numerous cellular responses, including changes in enzyme activity, gene expression, protein synthesis, cell proliferation and death. Importantly, the engagement of monovalent ions in regulation of the above-listed cellular responses occurs at steps upstream of Ca2+i and other key intermediates of intracellular signaling, which allows them to be considered as second messengers. With the exception of HCO3-sensitive soluble adenylyl cyclase, the molecular origin of sensors involved in the function of monovalent ions as second messengers remains unknown.

Keywords

Sodium Potassium Proton Bicarbonate Chloride Intracellular signalling 

References

  1. 1.
    Adragna N., Di Fulvio M., Lauf P.K. 2004. Regulation of K-Cl cotransport: from function to genes. J. Membane. Biol. 201:109–137CrossRefGoogle Scholar
  2. 2.
    Akar F., Jiang G., Paul R.J., O’Neill W.C. 2001. Contractile regulation of the Na+-K+-2Cl cotransporter in vascular smooth muscle. Am. J. Physiol. 281:C579–C584Google Scholar
  3. 3.
    Akar F., Skinner E., Klein J.D., Jena M., Paul R.J., O’Neill W.C. 1999. Vasoconstrictors and nitrovasodilators reciprocally regulate the Na+-K+-2Cl cotransporter in rat aorta. Am. J. Physiol. 276:C1383–C1390PubMedGoogle Scholar
  4. 4.
    Akimova O.A., Bagrov A.Y., Lopina O.D., Kamernitsky A.V., Tremblay J., Hamet P., Orlov S.N. 2005.Cardiotonic steroids differentially affect intracellular Na+ and [Na+]i/[K+]i-independent signaling in C7-MDCK cells. J. Biol. Chem. 280:832–839PubMedGoogle Scholar
  5. 5.
    Akimova O.A., Pchejetski D., Hamet P., Orlov S.N. 2006. Modest intracellular acidification suppresses death signaling in ouabain-treated cells. Pfluegers Archiv 451:569–578PubMedCrossRefGoogle Scholar
  6. 6.
    Al-Habori M. 2001. Macromolecular crowding and its role as intracellular signalling of cell volume regulation. Int. J. Biochem. Cell Biol. 33:844–864PubMedCrossRefGoogle Scholar
  7. 7.
    Anfinogenova Y.J., Baskakov M.B., Kovalev I.V., Kilin A.A., Dulin N.O., Orlov S.N. 2004. Cell-volume-dependent vascular smooth muscle contraction: role of Na+, K+, 2Cl cotransport, intracellular Cl and L-type Ca2+ channels. Pfluegers Archiv 449:42–55PubMedCrossRefGoogle Scholar
  8. 8.
    Barone F.C., White R.F., Spera P.A., Ellison J., Currie R. W., Wang X., Feuerstein G. Z. 1998. Ischemic preconditioning and brain tolerance. Temporal histological and functional outcomes, protein synthesis requirement, and interleukin-1 receptor antagonists and early gene expression. Stroke 29:1937–1951PubMedGoogle Scholar
  9. 9.
    Bennekou P., Christophersen. P. 2003. Ion channels. In:. Bernhardt I., Ellory J. C., eds. Red Cell Membrane Transport in Health and Disease. Springer, Berlin pp 139–152.Google Scholar
  10. 10.
    Berridge M.J. 1993. Inositol triphosphate and calcium signalling. Nature 361:315–325PubMedCrossRefGoogle Scholar
  11. 11.
    Blaustein M.P., Lederer W.J. 1999. Sodium/calcium exchange: its physiological implications. Physiol. Rev. 79:763–854PubMedGoogle Scholar
  12. 12.
    Blumenstein Y., Maximyuk O.P., Lozovaya N., Yatsenko N.M., Kanevsky N., Kristal O., Dascal N. 2004. Intracellular Na+ inhibits voltage-dependent N-type Ca2+ channels by a G protein βγ subunit-dependent mechanism. J. Physiol. 556:121–134PubMedCrossRefGoogle Scholar
  13. 13.
    Breitwieser G.E., Altamirano A.A., Russell J.M. 1990. Osmotic stimulation of Na+-K+-Cl cotransport in squid giant axon is [Cl]i dependent. Am. J. Physiol. 258:C749–C753PubMedGoogle Scholar
  14. 14.
    Brown R.A., Chipperfield A.R., Davis J.P.L., Harper A.A. 1999. Increased (Na+K+Cl) cotransport in rat arterial smooth muscle in deoxycorticosterone (DOCA)/salt-induced hypertension. J. Vasc. Res. 36:492–501PubMedCrossRefGoogle Scholar
  15. 15.
    Burns C.P., Rozengurt E. 1984. Extracellular Na+ and initiation of DNA synthesis: role of intracellular pH and K+. J. Cell Biol. 98:1082–1089PubMedCrossRefGoogle Scholar
  16. 16.
    Cahn F., Lubin M. 1978. Inhibition of elongation steps of protein synthesis at reduced potassium concentrations in reticulocytes, reticulocyte lysate. J. Biol. Chem. 253:7798–7803PubMedGoogle Scholar
  17. 17.
    Canessa M., Salazar G., Werner E., Vallega G., Gonzalez A. 1994. Cell growth and Na-K-Cl cotransport responses of vascular smooth muscle cells of Milan rats. Hypertension 23:1022–1026PubMedGoogle Scholar
  18. 18.
    Carafoli E. 2002. Calcium signaling: a tale for all seasons. Proc. Natl. Acad. Sci. USA 99:1115–1122PubMedCrossRefGoogle Scholar
  19. 19.
    Chen Y., Cann M.J., Litvin T.N., Iourgenko V., Sinclair M.L., Levin L.R., Buck J. 2000. Soluble adenylyl cyclase as an evolutionarily conserved bicarbonate sensor. Science 289:625–628PubMedCrossRefGoogle Scholar
  20. 20.
    Cheng H.F., Wang J.L., Zhang M.Z., McKanna J.A.M., Harris. R.C. 2000. Role of p38 in the regulation of renal cortical cyclooxygenase-2 expression by extracellular chloride. J. Clin. Invest. 106:681–688PubMedGoogle Scholar
  21. 21.
    Chipperfield A.R., Harper A.A. 2001. Chloride in smooth muscle. Prog. Biophys. Mol. Biol. 74:175–221CrossRefGoogle Scholar
  22. 22.
    Contreras R.G., Lazaro A., Mujica A., Gonzalez-Mariscal L., Valdes J., Garcia-Villegas M. R., Cereijido M. 1995. Ouabain resistance of the epithelial cell line (Ma104) is not due to lack of affinity of its pumps for the drug. J. Membrane Biol. 145:295–300Google Scholar
  23. 23.
    Contreras R. G., Shoshani L., Flores-Maldonado C., Lazaro A., Cereijido M. 1999. Relationship between Na+, K+-ATPase and cell attachment. J. Cell Sci. 112:4223–4232PubMedGoogle Scholar
  24. 24.
    Coulon V., Veyrune J.-L., Tourkine N., Vié A., Hipskind R.A., Blanchard J.-M. 1999. A novel calcium signaling pathway targets the c-fos intragenic transcriptional pausing site. J. Biol. Chem. 274:30439–30446PubMedCrossRefGoogle Scholar
  25. 25.
    Cutaia M., Tollefson K., Kroczynski J., Parks N., Rounds S. 2000. Role of Na/H antiport in pH-dependent cell death in pulmonary artery endothelial cells. Am. J. Physiol. 278:L536–L544Google Scholar
  26. 26.
    D’Arcangelo D., Facchiano F., Barlucchi L.M., Melilo G., Illi B., Testolin L., Gaetano, C. et al. 2000.Acidosis inhibits endothelial cell apoptosis and function and induces basic fibroblast growth factor and vascular endothelial growth factor expression. Circ. Res. 86:312–318PubMedGoogle Scholar
  27. 27.
    D’Arcangelo D., Gaetano C., Capogrossi M.C. 2002. Acidification prevents endothelial cell apoptosis by Axl activation. Circ. Res. 91:e4–e12PubMedCrossRefGoogle Scholar
  28. 28.
    Davis J.P.L., Chipperfield A.R., Harper A.A. 1993. Accumulation of intracellular chloride by (Na-K-Cl) cotransport in rat arterial smooth muscle is enhanced in deoxycorticosterone acetate (DOCA)/salt hypertension. J. Mol. Cell. Cardiol. 25:233–237PubMedCrossRefGoogle Scholar
  29. 29.
    Delpire E. 2000. Cation-chloride cotransporters in neuronal communication. News Physiol. Sci. 15:309–312PubMedGoogle Scholar
  30. 30.
    Dorovkov M.V., Pavur K.S., Petrov A.N., Ryazanov A.G. 2002. Regulation of elongation factor-2 kinase by pH. Biochemistry 41:13444–13450PubMedCrossRefGoogle Scholar
  31. 31.
    Ewart H.S., Klip A. 1995. Hormonal regulation of the Na+-K+-ATPase: mechanisms underlying rapid and sustained changes in pump activity. Am. J. Physiol. 269:C295–C311PubMedGoogle Scholar
  32. 32.
    Falciola J., Volet B., Anner R. M., Moosmayer M., Lacotte D., Anner B.M. 1994. Role of cell membrane Na, K-ATPase for survival of human lymphocytes in vivo. Biosci. Rep. 14:189–204PubMedCrossRefGoogle Scholar
  33. 33.
    Féraille E., Doucet A. 2001. Sodium-potassium-adenosinetriphosphatase-dependent sodium transport in the kidney: hormonal control. Physiol. Rev. 81:345–418PubMedGoogle Scholar
  34. 34.
    Folkow B. 1982. Physiological aspects of primary hypertension. Physiol. Rev. 62:347–504PubMedGoogle Scholar
  35. 35.
    Francisco L.J., Osborn J.L., DiBona G.F. 1982. Prostaglandins in renin release during sodium deprivation. Am. J. Physiol. 243:F261–F268Google Scholar
  36. 36.
    Gagnon F., Hamet P., Orlov S.N. 1999. Na+, K+ pump and Na+-coupled ion carriers in isolated mammalian kidney epithelial cells: regulation by protein kinase C. Can. J. Physiol. Pharmacol. 77:305–319PubMedCrossRefGoogle Scholar
  37. 37.
    Garty N.B., Salomon Y. 1987.Stimulation of partially purified adenylate cyclase from bull sperm by bicarbonate. FEBS Lett 218:148–152PubMedCrossRefGoogle Scholar
  38. 38.
    Grinstein S., Furuya W., Downey G.P. 1992. Activation of permeabilized neutrophils: role of anions. Am. J. Physiol. 263:C78–C85PubMedGoogle Scholar
  39. 39.
    Grinstein S., Smith J.D., Benedict S.H., Gelfand E.W. 1989. Activation of sodium-hydrogen exchange by mitogens. Curr. Topics Membr. Transport 34:331–343Google Scholar
  40. 40.
    Guyton A.C. 1980. Arterial Pressure and Hypertension. WB Saunders, PhiladelphiaGoogle Scholar
  41. 41.
    Guyton A.C., Coleman T.G., Cowley A.W. Jr., Scheel K.W., Manning R.D. Jr., Norman R.A. Jr. 1975. Arterial pressure regulation: overriding dominance of the kidney in long-term regulation and in hypertension. In: Laragh J.H., ed. Hypertension Mechanisms. York Medical Books, New York, pp 1–24Google Scholar
  42. 42.
    Haas M., McBrayer D., Lytle C. 1995. [Cl]i-dependent phosphorylation of the Na-K-Cl cotransport protein of dog tracheal epithelial cells. J. Biol. Chem. 270:28955–2861PubMedCrossRefGoogle Scholar
  43. 43.
    Hadrava V., Tremblay J., Sekaly R.-P., Hamet P. 1992. Accelerated entry of smooth muscle cells from spontaneously hypertensive rats into the S phase of the cell cycle. Biochem. Cell Biol. 70:599–604PubMedCrossRefGoogle Scholar
  44. 44.
    Hamet P., Orlov S.N., DeBlois D., Sun Y., Kren V., Tremblay J. 2004. Angiotensin as a cytokine implicated in accelerated cellular turnover. In: Unger T., Scholkens B.A. eds. Handbook of Experimental Pharmacology. Unger, Springer Verlag, New York, pp 71–98Google Scholar
  45. 45.
    Hayashi H., Szaszi K., Grinstein S. 2002. Multiple modes of regulation of Na+/H+ exchangers. Ann. N.Y. Acad. Sci. 976:248–258PubMedCrossRefGoogle Scholar
  46. 46.
    He X.R., Greenberg S.C., Briggs J.P., Schermann J. 2005.Effects of furosemide and verapamil on the NaCl dependency of macula densa-mediated renin secretion. Hypertension 26:137–142Google Scholar
  47. 47.
    Heizmann C. W., Hunziker W. 1991. Intracellular calcium-binding proteins: more sites than insights. TiBS 16:98–103PubMedGoogle Scholar
  48. 48.
    Herrera R.E., Nordheim A., Stewart A.F. 1997. Chromatin structure analysis of the human c-Fos promoter rveals a centrally positioned nucleosome. Chromosoma 106:284–292PubMedCrossRefGoogle Scholar
  49. 49.
    Isaev N.K., Stelmashook E.V., Halle A., Harms C., Lautenschlager M., Weih M., Dirnagl, U. et al. 2000. Inhibition of Na+, K+-ATPase activity in cultured cerebellar granule cells prevents the onset of apoptosis induced by low potassium. Neurosci. Lett. 283:41–44PubMedCrossRefGoogle Scholar
  50. 50.
    Islam C.F., Mathie R.T., Dinneen M.D., Kiely E.A., Peters A.M., Grace P.A. 1997. Ischemia-reperfusion injury in the rat kidney: the effect of preconditioning. Br. J. Urol. 79:842–847PubMedGoogle Scholar
  51. 51.
    Iwamoto L.M., Fujiwara N., Nakamura K.T., Wada R.K. 2004. Na-K-2Cl cotransporter inhibition impairs human lung cellular proliferation. Am. J. Physiol. 287:L510–L514Google Scholar
  52. 52.
    Jiang G., Klein J.D., O’Neill W.C. 2001. Growth factors stimulate the Na-K-2Cl cotransporter NKCC1 through a novel Cl-dependent mechanism. Am. J. Physiol. 281:C1948–C1953Google Scholar
  53. 53.
    Kotchen T.A. 2005. Contribution of sodium and chloride to NaCl-induced hypertension. Hypertension 45:849–850PubMedCrossRefGoogle Scholar
  54. 54.
    Kotchen T.A., Galla J. H., Luke R.G. 1976. Failure of NaHCO3 and KHCO3 to inhibit renin in the rat. Am. J. Physiol. 231:F1050–F1056Google Scholar
  55. 55.
    Kovalev I.V., Baskakov M.B., Anfinogenova Y.J., Borodin Y.L., Kilin A.A., Minochenko I.L., Popov, A.G. et al. 2003. Effect of Na+, K+, 2Cl cotransport inhibitor bumetanide on electrical and contractile activity of smooth muscle cells in guinea pig ureter. Bull. Exp. Biol. Med. 136(8):145–149PubMedCrossRefGoogle Scholar
  56. 56.
    Kuchler R.J. 1967. The role of sodium and potassium in regulating amino acid accumulation and protein synthesis in LM-strain mouse fibroblasts. Biochim. Biophys. Acta 136:473–483PubMedGoogle Scholar
  57. 57.
    Laamarti M.A., Bell P.D., Lapointe J.-Y. 1998. Transport and regulatory properties of the apical Na-K-2Cl cotransporter of macula densa cells. Am. J. Physiol. 275:F703–F709PubMedGoogle Scholar
  58. 58.
    Lanius R.A., Pasqualotto B.A., Shaw C.A. 1993. γ-Aminobutyric acid A receptor regulation by a chloride-dependent kinase and a sodium-dependent phosphatase. Brain Res. Mol. Brain Res. 20:192–198PubMedCrossRefGoogle Scholar
  59. 59.
    Ledbetter M.L.S., Lubin M. 1977. Control of protein synthesis in human fibroblasts by intracellular potassium. Exp. Cell Res. 105:223–236PubMedCrossRefGoogle Scholar
  60. 60.
    Lee J.-M., Grabb M.C., Zipfel G.J., Choi D. W. 2000. Brain tissue responses to ischemia. J. Clin. Invest. 106:723–731PubMedGoogle Scholar
  61. 61.
    Lenart B., Kintner D.B., Shull G.E., Sun D. 2004. Na-K-Cl cotransporter-mediated intracellular Na+ accumulation affects Ca2+ signaling in astrocytes in an in vitro ischemic model. J. Neurosci. 24:9585–9597PubMedCrossRefGoogle Scholar
  62. 62.
    Li Y.W., Whittaker P., Kloner R.A. 1992. The transient nature of the effect of ischemic preconditioning on myocardial infarct size and ventricular arrhythmia. Am. Heart J. 123:346–353PubMedCrossRefGoogle Scholar
  63. 63.
    Lincoln T.M., Cornwell T. L. 1993. Intracellular cyclic GMP receptor proteins. FASEB J. 7:328–338PubMedGoogle Scholar
  64. 64.
    Lubin M. 1967. Intracellular potassium and macromolecular synthesis in mammalian cells. Nature 213:451–453PubMedCrossRefGoogle Scholar
  65. 65.
    Lubin M., Ennis H.L. 1964. On the role of intracellular potassium in protein synthesis. Biochim. Biophys. Acta 80:614–631PubMedGoogle Scholar
  66. 66.
    Lytle C., Forbush B. 1996. Regulatory phosphorylation of the secretory Na-K-Cl cotransporter: modulation by cytoplasmic Cl. Am. J. Physiol. 270:C437–C448PubMedGoogle Scholar
  67. 67.
    Maingret F., Patel A., Lesage J.F., Lazdunski M., Honoré. E. 1999. Mechano- and acid stimulation, two interactive modes of activation of the TREK-1 potassium channels. J. Biol. Chem. 274:26691–26696PubMedCrossRefGoogle Scholar
  68. 68.
    Majno G., Joris. I. 1995. Apoptosis, oncosis, and necrosis. An overview of cell death. Am. J. Pathol. 146:3–15PubMedGoogle Scholar
  69. 69.
    Mallis L., Guber H., Adler S.G., Palant C.E. 1991. Intracellular chloride activity in cultured mesangial cells. Renal Physiol. Biochem. 14:12–18PubMedGoogle Scholar
  70. 70.
    Marakhova I.I., Vereninov A.A., Toropova F.V., Vinogradova T.A. 1998. Na,K,-ATPase pump in activated human lymphocytes: on the mechanisms of rapid and long-term increase in K influxes during the initiation of phytohemagglutinin-induced proliferation. Biochim. Biophys. Acta. 1368:61–72PubMedCrossRefGoogle Scholar
  71. 71.
    Matsuyama S., Reed J.C. 2000. Mitochondria-dependent apoptosis and cellular pH regulation. Cell Death Different. 7:1155–1165CrossRefGoogle Scholar
  72. 72.
    Mechti N., Piechaczyk M., Blanchard J.M., Jeanteur P., Lebleu B. 1991. Sequence requirements for premature transcription arrest within the first intron of the mouse c-fos gene. Mol. Cell. Biol. 11:2832–2841PubMedGoogle Scholar
  73. 73.
    Meeker G.L. 1970. Intracellular potassium requirement for protein synthesis and mitotic apparatus in sea urchin eggs. Exp. Cell Res. 63:165–170PubMedCrossRefGoogle Scholar
  74. 74.
    Minton A.P. 2001. The influence of macromolecular crowding and macromolecular confinement on biochemical reactions in physiological media. J. Biol. Chem. 276:10577–10580PubMedCrossRefGoogle Scholar
  75. 75.
    Muimo R., Banner S.J., Marshall L.J., Mehta A. 1998. Nucleoside diphosphate kinase and Cl-sensitive protein phosphorylation in apical membranes from ovine airway epithelium. Am. J. Respir. Cell Mol.Biol. 18:270–278PubMedGoogle Scholar
  76. 76.
    Nakagawa Y., Rivera V., Larner A.C. 1992. A role for Na/K-ATPase in the control of human c-fos and c-jun transcription. J. Biol. Chem. 267:8785–8788PubMedGoogle Scholar
  77. 77.
    O’Neill W.C., Steinberg D.F. 1995. Functional coupling of Na+-K+-2Cl cotransport and Ca2+-dependent K+ channels in vascular endothelial cells. Am. J. Physiol 269:C267–C274PubMedGoogle Scholar
  78. 78.
    Obermuller N., Kunchaparfy S., Ellison D.H., Bachmann S. 1996. Expression of the Na-K-2Cl cotransporter by macula densa and thick ascending limb cells of rabbit and rat nephron. J. Clin. Invest. 98:635–640PubMedGoogle Scholar
  79. 79.
    Okamura N., Tajima Y., Onoe S., Sugita Y. 1991. Purification of bicarbonate-sensitive sperm adenylyl cyclase by 4-acetamido-4′-isothiocyanostilbene-2,2′-disulfonic acid-affinity chromatography. J. Biol. Chem. 266:17754–17759PubMedGoogle Scholar
  80. 80.
    Orlov S.N., Adragna N., Adarichev V.A., Hamet P. 1999. Genetic and biochemical determinants of abnormal monovalent ion transport in primary hypertension. Am. J. Physiol. 276:C511–C536PubMedGoogle Scholar
  81. 81.
    Orlov S.N., Akimova O.A., Hamet P. 2005. Cardiotonic steroids: novel mechanisms of Na+ i-mediated and -independent signaling involved in the regulation of gene expression, proliferation and cell death. Curr. Hypertens. Rev. 1:143–257CrossRefGoogle Scholar
  82. 82.
    Orlov S.N., Hamet P. 2004. Apoptosis vs oncosis: role of cell volume and intracellular monovalent cations. Adv. Exp. Med. Biol. 559:219–233CrossRefPubMedGoogle Scholar
  83. 83.
    Orlov S.N., Resink T.J., Bernhardt J., Ferracin F., Buhler F.R. 1993. Vascular smooth muscle cell calcium transport. Regulation by angiotensin II and lipoproteins. Hypertension 21:195–203PubMedGoogle Scholar
  84. 84.
    Orlov S.N., Taurin S., Thorin-Trescases N., Dulin N.O., Tremblay J., Hamet P. 2000. Inversion of the intracellular Na+/K+ ratio blocks apoptosis in vascular smooth muscle cells by induction of RNA synthesis. Hypertension 35:1062–1068PubMedGoogle Scholar
  85. 85.
    Orlov S.N., Taurin S., Tremblay J., Hamet P. 2001. Inhibition of Na+, K+ pump affects nucleic acid synthesis and smooth muscle cell proliferation via elevation of the [Na+]i/[K+]i ratio: possible implication in vascular remodeling. J. Hypertens. 19:1559–1565PubMedCrossRefGoogle Scholar
  86. 86.
    Orlov S.N., Thorin-Trescases N., Kotelevtsev S.V., Tremblay J., Hamet P. 1999. Inversion of the intracellular Na+/K+ ratio blocks apoptosis in vascular smooth muscle at a site upstream of caspase-3. J. Biol. Chem. 274:16545–16552PubMedCrossRefGoogle Scholar
  87. 87.
    Orlov S.N., Thorin-Trescases N., Pchejetski D., Taurin S., Farhat N., Tremblay J., Thorin, E. et al. 2004. Na+/K+ pump and endothelial cell survival: [Na+]i/[K+]i-independent necrosis triggered by ouabain, and protection against apoptosis mediated by elevation of [Na+]i. Pfluegers Arch. 448:335–345CrossRefGoogle Scholar
  88. 88.
    Orlov S.N., Tremblay J., DeBlois D., Hamet. P. 2002. Genetics in programmed cell death and proliferation. Semin. Nephrol. 22:161–171PubMedCrossRefGoogle Scholar
  89. 89.
    Orlov S.N., Tremblay J., Hamet P. 1996. Bumetanide-sensitive ion fluxes in vascular smooth muscle cells: lack of functional Na+, K+, 2Cl cotransport. J. Membrane Biol. 153:125–135CrossRefGoogle Scholar
  90. 90.
    Orlowski J., Grinstein S. 2004. Diversity of the mammalian sodium/proton exchanger SLC9 gene family. Pfluegers Arch. 447:549–565CrossRefGoogle Scholar
  91. 91.
    Panet R., Atlan H. 1991. Stimulation of bumetanide-sensitive Na+/K+/Cl cotransport by different mitogens in synchronized human skin fibroblasts is essential for cell proliferation. J. Cell Biol. 114:337–342PubMedCrossRefGoogle Scholar
  92. 92.
    Panet R., Ellash M., Pick M., Atlan H. 2002. Na+/K+/Cl cotransporter activates mitogen-activated protein kinase in fibroblasts and lymphocytes. J. Cell. Physiol. 190:227–237PubMedCrossRefGoogle Scholar
  93. 93.
    Panet R., Markus M., Atlan H. 1994. Bumetanide and furosemide inhibited vascular endothelial cell proliferation. J. Cell. Physiol. 158:121–127PubMedCrossRefGoogle Scholar
  94. 94.
    Panet R., Markus M., Atlan H. 2000.Overexpression of the Na+/K+/Cl cotransporter gene induces cell proliferation and phenotypic transformation in mouse fibroblasts. J. Cell. Physiol. 182:109–118PubMedCrossRefGoogle Scholar
  95. 95.
    Pastor-Soler N., Beaulieu V., Litvin T.N., Da Silva N., Chen Y., Brown D., Buck, J. et al. 2003. Bicarbonate-regulated adenylyl cyclase (sAC) is a sensor that regulates pH-dependent V-ATPase recycling. J. Biol. Chem. 278:49523–49529PubMedCrossRefGoogle Scholar
  96. 96.
    Pchejetski D., Taurin S., der Sarkissian S., Lopina O.D., Pshezhetsky A.V., Tremblay J., DeBlois, D. et al. 2003. Inhibition of Na+, K+-ATPase by ouabain triggers epithelial cell death independently of inversion of the [Na+]i/[K+]i ratio. Biochem. Biophys. Res. Commun. 301:735–744PubMedCrossRefGoogle Scholar
  97. 97.
    Perez-Sala D., Collado-Escobar D., Mollinedo F. 1995. Intracellular alkalinization suppresses lovastatin-induced apoptosis in HL-60 cells through the inactivation of a pH-dependent endonuclease. J. Biol. Chem. 270:6235–6242PubMedCrossRefGoogle Scholar
  98. 98.
    Pirutin S.K., Turovetsky V.B., Kudryashov Y.B., Rubin A.B. 2002. Modification of damaging effect of ultraviolet radiation on mice peritoneal macrophage membranes. Radiat. Biol. Radioecol. 42:151–154Google Scholar
  99. 99.
    Pollack G. H. 2004. Cells, Gels and the Engines of Life. Ebner & Sons, Seattle, WAGoogle Scholar
  100. 100.
    Pollack M., Fisher H.W. 1976. Dissociation of ribonucleic acid and protein synthesis in mammalian cells deprived of potassium. Arch. Biochem. Biophys. 172:188–190CrossRefGoogle Scholar
  101. 101.
    Prasad K.V.S., Severini A., Kaplan J.G. 1987. Sodium ion fluxes in proliferating lymphocytes: an early component of mitogenic signal. Arch. Biochem. Biophys. 252:515–525PubMedCrossRefGoogle Scholar
  102. 102.
    Rajan S., Wischmeter E., Liu G.X., Preisig-Muller R., J. Daut, Karschin A., Derst C. 2000. TASK-3, a novel tandem pore domain acid-sensitive K+ channel. An extracellular histidine as pH sensor. J. Biol. Chem. 275:16650–16657PubMedCrossRefGoogle Scholar
  103. 103.
    Rakowski R.F., Sagar S. 2003. Found: Na+ and K+ binding sites of the sodium pump. News Physiol. Sci. 18:164–168PubMedGoogle Scholar
  104. 104.
    Rishal I., Keren-Raifman T., Yakubovich D., Ivanina T., Dessauer C.W., Slepak V. Z., Dascal N. 2003. Na+ promotes the dissociation between GαGDP and Gβγ, activating G-protein-gated K+ channels. J. Biol. Chem. 278:3840–3845PubMedCrossRefGoogle Scholar
  105. 105.
    Robison G.A., Butcher R.W., Sutherland E.W. 1971. Cyclic AMP. Academic Press, New YorkGoogle Scholar
  106. 106.
    Rose C.R., Konnerth A. 2001. NMDA-receptor-mediated Na+ signals in spines and dendrites. J. Neurosci. 21:4207–4214PubMedGoogle Scholar
  107. 107.
    Runkel L., Shaw P.E., Herrera R.E., Hipskind R.A., Norheim A. 1991. Multiple basal promoter elements determine the level of human c-fos transcription. Mol. Cell. Biol. 11:1270–1280PubMedGoogle Scholar
  108. 108.
    Russell J.M. 2000. Sodium-potassium-chloride cotransport. Physiol. Rev. 80:212–276Google Scholar
  109. 109.
    Ryazanov A.G. 2002. Elongation factor-2 kinase and its newly discovered relatives. FEBS Lett. 514:26–29PubMedCrossRefGoogle Scholar
  110. 110.
    Ryazanov A.G., Shestakova E.A., Natapov P.G. 1988. Phosphorylation of elongation factor 2 by EF-2 kinase affects rate of translation. Nature 334:170–173PubMedCrossRefGoogle Scholar
  111. 111.
    Schmidlin O., Tanaka M., Bollen A.W., Yi S.L., Morris R.B. 2005. Chloride-dominant salt sensitivity in the stroke-prone spontaneously hypertensive rat. Hypertension 45:867–873PubMedCrossRefGoogle Scholar
  112. 112.
    Siesjo B.K., Katsura K., Kristian T. 1996. Acidosis-related damage. Adv. Neurol. 71:209–223PubMedGoogle Scholar
  113. 113.
    Sutherland E.W. 1972. Studies on the mechanism of hormone action. Science 177:401–408PubMedGoogle Scholar
  114. 114.
    Takano S., Wadhwa R., Yoshii Y., Nose T., Kaul S.C., Mitsui Y. 1997. Elevated level of mortalin expression in human brain tumors. Exp. Cell Res. 237:38–45PubMedCrossRefGoogle Scholar
  115. 115.
    Taurin S., Dulin N.O., Pchejetski D., Grygorczyk R., Tremblay J., Hamet P., Orlov S. N. 2002. c-Fos expression in ouabain-treated vascular smooth muscle cells from rat aorta: evidence for an intracellular-sodium-mediated, calcium-independent mechanism. J. Physiol. 543:835–847PubMedCrossRefGoogle Scholar
  116. 116.
    Taurin S., Hamet P., Orlov S.N. 2003. Na/K pump and intracellular monovalent cations: novel mechanism of excitation-transcription coupling involved in inhibition of apoptosis. Mol. Biol. 37:371–381CrossRefGoogle Scholar
  117. 117.
    Taurin S., Seyrantepe V., Orlov S.N., Tremblay T.-L., Thibaut P., Bennett M. R., Hamet, P. et al. 2002. Proteome analysis and functional expression identify mortalin as an anti-apoptotic gene induced by elevation of [Na+]i/[K+]i ratio in cultured vascular smooth muscle cells. Circ. Res. 91:915–922PubMedCrossRefGoogle Scholar
  118. 118.
    Treharne K.J., Riemen C.E., Marshall L.J., Muimo R., Mehta A. 2001. Nucleoside diphosphate kinase – a component of the [Na+]- and [Cl]-sensitive phosphorylation cascade in human and murine airway epithelium. Pfluegers Arch. 443:S97–S102CrossRefGoogle Scholar
  119. 119.
    Tremblay J., Gerzer R., Vinay P., Pang S.C., Beliveau R., Hamet P. 1985. The increase of cGMP by atrial natriuretic factor correlates with the distribution of particulate guanylate cyclase. FEBS Letters 181:17–22PubMedCrossRefGoogle Scholar
  120. 120.
    Trevisi L., Visentin B., Cusinato F., Pighin I., Luciani S. 2004. Antiapoptotic effect of ouabain on human umbilical endothelial cells. Biochem. Biophys. Res. Commun. 321:716–721PubMedCrossRefGoogle Scholar
  121. 121.
    Uehara Y., Numabe A., Kawabata Y., Nagata T., Hirawa N., Ishimutsu T., Matsuoka, H. et al. 1991. Rapid smooth muscle cell growth and endogenous prostaglandin system in spontaneously hypertensive rats. Am. J. Hypertens. 4:806–814PubMedGoogle Scholar
  122. 122.
    Wadhwa R., Pereira-Smith O.M., Reddel R.R., Sugimoto Y., Mitsui Y., Kaul S.C. 1995. Correlation between complementation group for immortality and the cellular distribution of mortalin. Exp. Cell Res. 216:101–106PubMedCrossRefGoogle Scholar
  123. 123.
    Wadhwa R., Takano S., Mitsui Y., Kaul S. C. 1999. NIH 3T3 cells malignantly transformed by mot-2 show inactivation and cytoplasmic sequestration of the p53 proteins. Cell Res. 9:261–269PubMedCrossRefGoogle Scholar
  124. 124.
    Wadhwa R., Takano S., Robert M., Yoshida A., Nomura H., Reddel R.R., Mitsui, Y. et al. 1998. Inactivation of tumor suppressor p53 by Mot-2, a hsp70 family member. J. Biol. Chem. 273:29586–29591PubMedCrossRefGoogle Scholar
  125. 125.
    Wakabayashi S., Shigekawa M., Poyssegur J. 1997. Molecular physiology of vertebrate Na+/H+ exchanger. Physiol. Rev. 77:51–74PubMedGoogle Scholar
  126. 126.
    Williams R.S., Benjamin I.J. 2000. Protective responses in the ischemic myocardium. J. Clin. Invest. 106:813–818PubMedCrossRefGoogle Scholar
  127. 127.
    Wilson F.H., Disse-Nicodeme S., Choate K.A., Ishikawa K., Nelson-Williams C., Desitter I., Gunel, M. et al. 2001. Human hypertension caused by mutations in WNK kinases. Science 293:1107–1112PubMedCrossRefGoogle Scholar
  128. 128.
    Xie Z., Askari A. 2002. Na+/K+-ATPase as a signal transducer. Eur. J. Biochem. 269:2434–2439PubMedCrossRefGoogle Scholar
  129. 129.
    Xiong Z.-G., Zhu X.-M., Chu X.-P., Minami M., Hey J., Wei W.-L., MacDonald, J.F. et al. 2004. Neuroprotection in ishemia: blocking calcium-permeable acid-sensitive ion channels. Cell 118:687–698PubMedCrossRefGoogle Scholar
  130. 130.
    Yu X.-M., Salter M. B. 1998. Gain control of NMDA-receptor currents by intracellular sodium. Nature 396:469–474PubMedCrossRefGoogle Scholar
  131. 131.
    Zhou X., Jiang G., Zhao A., Bondeva T., Hirzel P., Balla T. 2001. Inhibition of Na,K-ATPase activates PI3 kinase and inhibits apoptosis in LLC-PK1 cells. Biochem. Biophys. Res. Commun. 285:46–51PubMedCrossRefGoogle Scholar
  132. 132.
    Zippin J. H., Farrell J., Huron D., Kamenetsy M., Hess K.C., Fischman D.A., Levin, L.R. et al. 2004. Bicarbonate-responsive “soluble” adenylyl cyclase defines a nuclear cAMP microdomain. J. Cell Biol. 164:527–534PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Centre de rechercheCentre hospitalier de l’Université de Montréal, (CHUM)-Hôtel-DieuMontrealCanada
  2. 2.Laboratory of Pathophysiology of Ion Transport Disorders, Centre de recherche CHUM - Hôtel-DieuMontrealCanada

Personalised recommendations