The Journal of Membrane Biology

, Volume 213, Issue 1, pp 31–37 | Cite as

Effect of Alloxan Diabetes and Subsequent Insulin Treatment on Temperature Kinetics Properties of Succinate Oxidase Activity in Rat Kidney Mitochondria

  • Samir P. Patel
  • Surendra S. Katyare


Early and late effects of alloxan diabetes and subsequent treatment with insulin on the temperature kinetics properties of succinate oxidase (SO) activity in rat kidney mitochondria were examined. In diabetic animals SO activity increased significantly and the increase was more pronounced at the late stage. Insulin treatment partially restored SO activity. However, the effect was temperature-dependent. In diabetic animals the energy of activation in the low temperature range (EL) increased significantly while that in the high temperature range (EH) decreased. The latter seems to be responsible for improving catalytic efficiency in the diabetic state. Insulin treatment normalized EH only in the 1-month diabetic group. The phase transition temperature (Tt), decreased in diabetic animals. Insulin treatment caused an increase beyond the control value in Tt in 1-month diabetic animals. The results suggest that insulin status-dependent modulation of SO activity is a complex process.


Alloxan diabetes Succinate oxidase Insulin status Diabetic modulation Arrhenius kinetics Kidney mitochondria 


  1. Ascic-Buturovic B., Surkovic I., Heljic B. 2005. Contemporary methods of prevention and treatment diabetic kidney disease. Med. Arh. 59:54–56PubMedGoogle Scholar
  2. Bartlett G.R. 1954. Phosphorus assay in column chromatography. J. Biol. Chem. 234:466–468Google Scholar
  3. Baydas B., Karagoz S., Meral I. 2002. Effects of oral zinc and magnesium supplementation on serum thyroid hormone and lipid levels in experimentally induced diabetic rats. Biol. Trace Elem. Res. 88:247–253PubMedCrossRefGoogle Scholar
  4. Bohlender J.M., Franke S., Stein G., Wolf G. 2005. Advanced glycation end products and the kidney. Am. J. Physiol. 289:R645–R659CrossRefGoogle Scholar
  5. Coste T., Pierlovisi M., Leonardi J., Dufayet D., Gerbi A., Lafont H., Vague P., Raccah D. 1999. Beneficial effects of gamma linolenic acid supplementation on nerve conduction velocity, Na+,K+ ATPase activity, and membrane fatty acid composition in sciatic nerve of diabetic rats. J. Nutr. Biochem. 10:411–420PubMedCrossRefGoogle Scholar
  6. Daum G. 1985. Lipids of mitochondria. Biochim. Biophys. Acta 822:1–42PubMedGoogle Scholar
  7. Dave B.H., Billimoria, F.R., Katyare S.S. 1989. Attered kinetic properties of rat heart mitochondrial enzymed following experiment – thyrotoxicosis. J. Biosci. 14:341–349Google Scholar
  8. Dave K.R., Katyare S.S. 2002. Effect of alloxan induced diabetes on serum and cardiac butyrylcholinesterase in the rat. J. Endocrinol. 175:241–250PubMedCrossRefGoogle Scholar
  9. Dave K.R., Syal A.R., Katyare S.S. 999. Tissue cholinesterases. A comparative study of their kinetic properties. Z. Naturforsch. 55c:100–108Google Scholar
  10. Dixon, M., Webb, E.C. 1979. In: M. Dixon, E.C. Webb, C. Thorne, Jr., K.F. Tipton, editors. Enzymes, 3rd ed. Longman, London pp. 332–446Google Scholar
  11. Ferreira F.M., Seica R., Oliveira P.J., Coxito P.M., Moreno A.J., Palmeira C.M., Santos M.S. 2003. Diabetes induces metabolic adaptations in rat liver mitochondria: Role of coenzyme Q and cardiolipin contents. Biochim. Biophys. Acta 1639:113–120PubMedGoogle Scholar
  12. Jacobsen P.K. 2005. Preventing end stage renal disease in diabetic patients–genetic aspect (part I). J. Renin Angiotensin Aldosterone Syst. 6:1–14PubMedGoogle Scholar
  13. Jawa A., Kcomt J., Fonseca V.A. 2004. Diabetic nephropathy and retinopathy. Med. Clin. North Am. 88:1001–1036PubMedCrossRefGoogle Scholar
  14. Jensen L.J., Ostergaard J., Flyvbjerg A. 2005. AGE-RAGE and AGE Cross-link interaction: Important players in the pathogenesis of diabetic kidney disease. Horm. Metab. Res. 37:26–34PubMedCrossRefGoogle Scholar
  15. Jolin T., 1987. Diabetes decreases liver and kidney nuclear 3,5,3’-triiodothyronine receptors in rats. Endocrinology 120:2144–2151PubMedGoogle Scholar
  16. Jolin T. 1988. Response of hepatic mitochondrial alpha-glycerophosphate dehydrogenase and malic enzyme to 3,5,3′-triiodothyronine in streptozotocin-diabetic rats. Endocrinology 123:248–257PubMedCrossRefGoogle Scholar
  17. Katovich M.J. Marks K.S., Sninsky C.A. 1993. Effect of insulin on the altered thyroid function and adrenergic responsiveness in the diabetic rat. Can. J. Physiol. Pharmacol. 71:568–575PubMedGoogle Scholar
  18. Katyare S.S., Joshi M.V., Fatterpaker P., Sreenivasan A. 1977. Effect of thyroid deficiency on oxidative phosphorylation in rat liver, kidney and brain mitochondria. Arch. Biochem. Biophys. 182:155–163PubMedCrossRefGoogle Scholar
  19. Katyare S.S., Satav J.G. 2005. Effect of streptozotocin-induced diabetes on oxidative energy metabolism in rat kidney mitochondria. A comparative study of early and late effects. Diabetes Obes. Metab. 7:555–562PubMedCrossRefGoogle Scholar
  20. Kumthekar M.M., Katyare S.S. 1992. Altered kinetic attributes of Na+, K+-ATPase activity in kidney, brain and erythrocyte membranes in alloxan-diabetic rats. Ind. J. Exp. Biol. 30:26–32Google Scholar
  21. Kuwahara Y., Yanagishita T., Konno N., Katagiri T. 1997. Changes in microsomal membrane phospholipids and fatty acids and in activities of membrane-bound enzyme in diabetic rat heart. Basic Res. Cardiol. 92:214–222PubMedCrossRefGoogle Scholar
  22. Lowry O.H., Rosebrough N.J., Farr A.L., Randall R.J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275PubMedGoogle Scholar
  23. Nerurkar M.A., Satav J.G., Katyare S.S. 1988. Insulin-dependent changes in lysosomal cathepsin D activity in rat liver, kidney, brain and heart. Diabetologia 31:119–122PubMedCrossRefGoogle Scholar
  24. Pandya J.D., Dave K.R., Katyare S.S. 2001. Effect of long term aluminum feeding on lipid/phospholipid profiles of rat brain synaptic plasma membranes and microsomes. J. Alzheimer’s Dis. 3:531–539Google Scholar
  25. Park C., Drake R.L. 1982. Insulin mediates the stimulation of pyruvate kinase by a dual mechanism. Biochem. J. 208:333–337Google Scholar
  26. Patel H.G., Aras R.V., Dave K.R., Katyare S.S. 1999. Kinetic attributes of Na+/K+ ATPase and lipid/phospholipid profiles of rat and human erythrocyte membrane. Z. Naturforsch. 55c:770–777Google Scholar
  27. Patel S.P., Katyare S.S. 2006a. Insulin-status-dependant modulation of FoF1 ATPase activity in rat kidney mitochondria. Arch. Physiol. Biochem. 112:150–157CrossRefGoogle Scholar
  28. Patel S.P., Katyare S.S. 2006b. Insulin-status-dependant modulation of FoF1 ATPase activity in rat liver mitochondria. Lipids. 41:695–703CrossRefGoogle Scholar
  29. Radetti G., Paganini C., Gentili L., Barbin F., Pasquino B., Zachmann M. 1994. Altered adrenal and thyroid function in children with insulin-dependent diabetes mellitus. Acta Diabetol. 31:138–140PubMedCrossRefGoogle Scholar
  30. Rodgers C.D., Noble E.G., Taylor A.W. 1994. The effect of STZ-induced diabetes on serum triiodothyronine (T3) and thyroxine (T4) levels in the rat: A seven week time course. Diabetes Res. 26:93–100PubMedGoogle Scholar
  31. Rondeel J.M., de Greef W.J., Heide R., Visser T.J. 1992. Hypothalamo-hypophysial-thyroid axis in streptozotocin-induced diabetes. Endocrinology 130:216–220PubMedCrossRefGoogle Scholar
  32. Satav J.G., Dave K.R., Katyare S.S. 2000. Influence of insulin status on extra-mitochondrial oxygen metabolism in the rat. Horm. Metab. Res. 32:57–61PubMedCrossRefGoogle Scholar
  33. Satav J.G., Katyare S.S. 1991. Effect of thyroidectomy and subsequent treatment with triiodothyronine kidney mitochondrial oxidative phosphorylation in the rat. J. Biosci. 16:81–89Google Scholar
  34. Satav J.G., Katyare S.S. 2004. Effect of streptozotocin-induced diabetes on oxidative energy metabolism in rat liver mitochondria - A comparative study of early and late effects. Ind. J. Clin. Biochem. 19:26–36CrossRefGoogle Scholar
  35. Singer T.P., Gutman M., Massey V. 1973. Succinate dehydrogenase. In: W. Lovenbarg, editor. Iron-Sulfur Proteins vol. 1,. Academic Press, New York pp. 227–254Google Scholar
  36. Skipski V.P., Barclay M., Barclay R.K., Fetzer V.A., Good J.J., Archibald F.M. 1967. Lipid composition of human serum lipoprotein. Biochem. J. 104:340–361PubMedGoogle Scholar
  37. Tabata S., Toyoda N., Nishikawa M., Yonemoto T., Gondou A., Ogawa Y., Sakaguchi N., Tokoro T., Wang F., Kadobayashi T., Imai Y., Inada M. 1999. Effect of streptozotocin-induced diabetes mellitus on type 1 deiodinase (D1) in inherited D1-deficient mice. Endocr. J. 46:497–504PubMedGoogle Scholar
  38. Zlatkis A., Zak B., Boyel J.A. 1953. A new method for the determination of serum cholesterol. J. Lab. Clin. Med. 41:486–492PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  1. 1.Department of Biochemistry, Faculty of ScienceThe Maharaja Sayajirao University of BarodaVadodaraIndia

Personalised recommendations