Advertisement

The Journal of Membrane Biology

, Volume 212, Issue 1, pp 61–68 | Cite as

Permeability Changes of Manduca sexta Midgut Brush Border Membranes Induced by Oligomeric Structures of Different Cry Toxins

  • C. Muñoz-Garay
  • J. Sánchez
  • A. Darszon
  • R.A. de Maagd
  • P. Bakker
  • M. Soberón
  • A. Bravo
Article

Abstract

The pore-formation activity of monomeric and oligomeric forms of different Cry1 toxins (from Cry1A to Cry1G) was analyzed by monitoring ionic permeability across Manduca sexta brush border membrane vesicles. The membrane vesicles were isolated from microvilli structures, showing a high enrichment of apical membrane markers and low intrinsic K+ permeability. A fluorometric assay performed with 3,3′-dipropylthiodicarbocyanine fluorescent probe, sensitive to changes in membrane potential, was used. Previously, it was suggested that fluorescence determinations with this dye could be strongly influenced by the pH, osmolarity and ionic strength of the medium. Therefore, we evaluated these parameters in control experiments using the K+-selective ionophore valinomycin. We show here that under specific ionic conditions changes in fluorescence can be correlated with ionic permeability without effects on osmolarity or ionic strength of the medium. It is extremely important to attenuate the background response due to surface membrane potential and the participation of the endogenous permeability of the membrane vesicles. Under these conditions, we analyzed the pore-formation activity induced by monomeric and oligomeric structures of different Cry1 toxins. The Cry1 toxin samples containing oligomeric structures correlated with high pore activity, in contrast to monomeric samples that showed marginal pore-formation activity, supporting the hypothesis that oligomer formation is a necessary step in the mechanism of action of Cry toxins.

Keywords

Bacillus thuringiensis Pore-forming toxin Manduca sexta Membrane potential diSC3(5) Oligomeric Cry toxin 

Notes

Acknowledgment

Our thanks to Lizbeth Cabrera for technical assistance and CONACyT J44962Q for financial support.

References

  1. 1.
    Maagd R.A., Bravo A., Crickmore N. 2001. How Bacillus thuringiensis has evolved specific toxins to colonize the insect world. Trends Genet. 17:193–199PubMedCrossRefGoogle Scholar
  2. 2.
    Schnepf E., Crickmore N., Van Rie J., Lereclus D., Baum J., Feitelson J., Zeigler D.R., Dean D.H. 1998. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol. Mol. Biol. Rev. 62:775–806PubMedGoogle Scholar
  3. 3.
    Bravo A., Jansens S., Peferoen M. 1992. Immunocytochemical localization of Bacillus thuringiensis insecticidal crystal proteins in intoxicated insects. J. Invertebr. Pathol. 60:237–246CrossRefGoogle Scholar
  4. 4.
    Bravo A., Gómez I., Conde J., Muñoz-Garay C., Sánchez J., Miranda R., Zhuang M., Gill S.S., Soberón M. 2004. Oligomerization triggers binding of a Bacillus thuringiensis Cry1Ab pore-forming toxin to aminopeptidase N receptor leading to insertion into membrane microdomains. Biochim. Biophys. Acta. 1667:38–46PubMedCrossRefGoogle Scholar
  5. 5.
    Gómez I., Sánchez J., Miranda R., Bravo A., Soberon M. 2002. Cadherin-like receptor binding facilitates proteolytic cleavage of helix α-1 in domain I and oligomer pre-pore formation of Bacillus thuringiensis Cry1Ab toxin. FEBS Lett. 513:242–246PubMedCrossRefGoogle Scholar
  6. 6.
    Zhuang M., Oltean D.I., Gomez I., Pullikuth A.K., Soberon M., Bravo A., Gill S.S. 2002. Heliothis virescens and Manduca sexta lipid rafts are involved in Cry1A toxin binding to the midgut epithelium and subsequent pore formation. J. Biol. Chem. 277:13863–13872PubMedCrossRefGoogle Scholar
  7. 7.
    Rausell C., Muñoz-Garay C., Miranda-CassoLuengo R., Gómez I., Rudiño-Piñera E., Soberón M., Bravo A. 2004. Tryptophan spectroscopy studies and black lipid bilayer analysis indicate that the oligomeric structure of Cry1Ab toxin from Bacillus thuringiensis is the membrane-insertion intermediate. Biochemistry. 43:166–174PubMedCrossRefGoogle Scholar
  8. 8.
    Rausell C., Pardo-López L., Sánchez J., Muñoz-Garay C., Morera C., Soberón M., Bravo A. 2004. Unfolding events in the water-soluble monomeric Cry1Ab toxin during transition to oligomeric pre-pore and membrane inserted pore channel. J. Biol. Chem. 279:55168–55175PubMedCrossRefGoogle Scholar
  9. 9.
    Rausell C., García-Robles I., Sánchez J., Muñoz-Garay C., Martínez-Ramírez A.C., Real M.D., Bravo A. 2004. Role of toxin activation on binding and pore formation activity of the Bacillus thuringiensis Cry3 toxins in membranes of Leptinotarsa decemlineata [Say]. Biochem. Biophys. Acta. 1660:99–105PubMedCrossRefGoogle Scholar
  10. 10.
    Lorence A., Darszon A., Díaz C., Liévano A., Quintero R., Bravo A. 1995. δ-Endotoxins induce cation channels in Spodoptera frugiperda brush border membranes in suspension and in planar lipid bilayers. FEBS Lett. 360:217–222PubMedCrossRefGoogle Scholar
  11. 11.
    Lorence A., Darszon A., Bravo A. 1997. The pore formation activity of Bacillus thuringiensis Cry1Ac toxin on Trichoplusia ni membranes depends on the presence of aminopeptidase N. FEBS Lett. 414:303–307CrossRefGoogle Scholar
  12. 12.
    Bashford C.L., Smith J.C. 1979. The use of optical probes to monitor membrane potential. Methods Enzymol. 55:569–586PubMedCrossRefGoogle Scholar
  13. 13.
    Waggoner A. 1976. Optical probes of membrane potential. J. Membr. Biol. 27:317–334PubMedCrossRefGoogle Scholar
  14. 14.
    Cabrini G., Verkman A.S. 1986. Localization of cyanine dye binding to brush border membranes by quenching of n-(9-anthroyloxy) fatty acid probes. Biochim. Biophys. Acta. 862:285–293PubMedCrossRefGoogle Scholar
  15. 15.
    Kirouac M., Vachon V., Rivest S., Schwartz J-L., Laprade R. 2003. Analysis of the properties of Bacillus thuringiensis insecticidal toxins using a potential-sensitive fluorescent probe. J. Membr. Biol. 196:51–59PubMedCrossRefGoogle Scholar
  16. 16.
    Bravo A., Miranda R., Gómez I., Soberon M. 2002. Pore formation activity of Cry toxins from Bacillus thuringiensis in an improved membrane preparation from Manduca sexta midgut cell microvilli. Biochem. Biophys. Acta. 1562:63–69PubMedCrossRefGoogle Scholar
  17. 17.
    Harlow E., Lane D., 1988. Antibodies. A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NYGoogle Scholar
  18. 18.
    Gómez I., Oltean D.L, Gill S.S., Bravo A., Soberón M. 2001. Mapping the epitope in cadherin-like receptors involved in Bacillus thuringiensis Cry1A toxin interaction using phage display. J. Biol. Chem. 276:28906–28912PubMedCrossRefGoogle Scholar
  19. 19.
    Güereca L., Bravo A. 1999. The oligomeric state of Bacillus thuringiensis Cry toxins in solution. Biochim. Biophys. Acta. 1429:342–350PubMedCrossRefGoogle Scholar
  20. 20.
    Höfte H., Grave H., Seurinck J., Jansens S., Mahillon J., Ampe C., Vandekerckhove J., Vanderbruggen H., VanMontagu M., Zabeau M., Vaek M. 1986. Structural and functional analysis of a cloned delta endotoxin of Bacillus thuringiensis berliner 1715. Eur. J. Biochem. 161:273–280PubMedCrossRefGoogle Scholar
  21. 21.
    Hille, B. 1992. Chapter 16 structure and function In: B. Hille, editor. Ionic Channels of Excitable Membranes, pp. 427–464. Sinauer Associates, Suderland, MAGoogle Scholar
  22. 22.
    Watts A., van Gorkom C.M. 1991. Surface organization of lipid bilayers. In: P. Yeagle, editor. The Structure of Biological Membranes. CRC Press, New YorkGoogle Scholar
  23. 23.
    Schwartz J.L., Laprade R. 2000. Membrane permeabilization by Bacillus thuringiensis toxins: Protein insertion and pore formation. In: J. F. Charles, A. Deleeluse, C. Nielsen-LeRoux et al., editors. Entomopathogenic Bacteria: From Laboratory to Field Application. Kluwer Academic, Amsterdam, Dordrecht, The Netherlands, pp. 199–217Google Scholar
  24. 24.
    Carroll J., Ellar D.J. 1993. An analysis of Bacillus thuringiensis δ-endotoxin action on insect midgut membrane permeability using a light scattering assay. Eur. J. Biochem. 214:771–778PubMedCrossRefGoogle Scholar
  25. 25.
    Carroll J., Ellar D.J. 1997. Analysis of the large aqueous pores produced by Bacillus thuringiensis protein insecticide in Manduca sexta midgut brush border membrane vesicles. Eur. J. Biochem. 245:797–804PubMedCrossRefGoogle Scholar
  26. 26.
    Tran B.L., Vachon V., Shwartz J.L., Laprade R. 2001. Differential effects on the pore formation properties of Bacillus thuringiensis insecticidal crystal proteins. Appl. Environ. Microbiol. 67:4488–4494PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • C. Muñoz-Garay
    • 1
  • J. Sánchez
    • 1
  • A. Darszon
    • 1
  • R.A. de Maagd
    • 2
  • P. Bakker
    • 2
  • M. Soberón
    • 1
  • A. Bravo
    • 1
  1. 1.Instituto de BiotecnologíaUniversidad Nacional Autónoma de MéxicoCuernavacaMéxico
  2. 2.Plant Research InternationalWageningenThe Netherlands

Personalised recommendations