Advertisement

The Journal of Membrane Biology

, Volume 210, Issue 1, pp 21–29 | Cite as

Elongation of Outer Transmembrane Domain Alters Function of Miniature K+ Channel Kcv

  • Brigitte Hertel
  • Sascha Tayefeh
  • Mario Mehmel
  • Stefan M. Kast
  • James Van Etten
  • Anna Moroni
  • Gerhard Thiel
Article

Abstract

The virus-coded channel Kcv has the typical structure of a two-transmembrane domain K+ channel. Exceptional are its cytoplasmic domains: the C terminus basically ends inside the membrane and, hence, precludes the formation of a cytoplasmic gate by the so-called bundle crossing; the cytoplasmic N terminus is composed of only 12 amino acids. According to structural predictions, it is positioned in the membrane/aqueous interface and connected via a proline kink to the outer transmembrane domain (TM1). Here, we show that this proline kink affects channel function by determining the position of TM1 in the membrane bilayer. Extension of the hydrophobic length of TM1 by either eliminating the proline kink or introducing an alanine in TM1 augments a time- and voltage-dependent inward rectification of the channel. This suggests that the positional information of TM1 in the bilayer is transmitted to a channel gate, which is not identical with the cytoplasmic bundle crossing.

Keywords

K+ channel gating Transmembrane domain Viral channel Kcv Ion selectivity Hydrophobic mismatch 

Notes

Acknowledgement

We are grateful to Rikard Blunck (Los Angeles) and Antoinette Killian (Utrecht) for helpful discussions. We also thank Jack Dainty (Norwich) for help with the manuscript. Particular thanks to Gisela Marx for excellent technical assistance. This work was supported in part by the Deutsche Forschungsgemeinschaft (to G. T. and S. M. K.); Fonds der Chemischen Industrie and the Adolf-Messer-Stiftung (to S. M. K.); the Ministero Istruzione Università e Ricerca, Progetto Fondo per gli Investimenti della Ricerca di Base (to A. M.); National Institutes of Health grant GM32441 (to J. V. E.); and grant P20RR15635 from the COBRE Program of the National Center for Research Resources (to J. V. E.).

References

  1. Bichet D., Lin Y., Ibarra C.A., Huang C.S., Yi B.A., Jan Y.N., Jan L.Y. 2004. Evolving potassium channels by means of yeast selection reveals structural elements important for selectivity. Proc. Natl. Acad. Sci. USA 101:4441–4446PubMedCrossRefGoogle Scholar
  2. Brickmann J., Goetze T., Heiden W., Moeckel G., Reiling S., Vollhardt H., Zachmann C.D. 1995. Data visualization in molecular science. In: J.D. Bowie, ed. Tools for Insight and Innovation, Addison-Wesley, Reading, PA pp 83-97.Google Scholar
  3. Brooks B.R., Bruccoleri R.E., Olafson B.D., States D.J., Swaminathan S., Karplus M. 1983. CHARMM: A program for macromolecular energy minimization and dynamics calculations. J. Comput. Chem. 4:187–217CrossRefGoogle Scholar
  4. Cordes F.S., Bright J.N., Sansom M.S.P. 2002. Proline-induced distortions of transmembrane helices. J. Mol. Biol. 323:951–960PubMedCrossRefGoogle Scholar
  5. dePlanque M.R.R., Killian J.A. 2003. Protein-lipid interactions studied with designed transmembrane peptides: Role of hydrophobic matching and interfacial anchoring. Mol. Membr. Biol. 20:271–284CrossRefGoogle Scholar
  6. Domene C., Grottesi A., Sansom M.S.P. 2004. Filter flexibility and distortion in a bacterial inward rectifier K+ channel: Simulation studies of KirBac1.1. Biophys. J. 87:256–267PubMedCrossRefGoogle Scholar
  7. Doyle D.A., Cabral J.M., Pfuetzner R.A., Kuo A., Gulbis J.M., Cohen S.L., Chait B.T., MacKinnon R. 1998. The structure of the potassium channel: Molecular basis of K+ conduction and selectivity. Science 280:69–76PubMedCrossRefGoogle Scholar
  8. Dumas F., Lebrun M.C., Tocanne J.F. 1999. Is the protein/lipid hydrophobic matching principle relevant to membrane organization and function? FEBS Lett. 458:271–277CrossRefGoogle Scholar
  9. Durell S.R., Guy H.R. 1999. Structural models of the KtrB, TrkH, and Trk1,2 symporters based on the structure of the KcsA K+ channel. Biophys. J. 77:789–807PubMedCrossRefGoogle Scholar
  10. Frishman D., Argos P. 1995. Knowledge-based secondary structure assignment. Proteins 23:556–579CrossRefGoogle Scholar
  11. Gazzarrini S., Kang M., Van Etten J.L., Tayefeh S., Kast S.M., DiFrancesco D., Thiel G., Moroni A. 2004. Long-distance interactions within the potassium channel pore are revealed by molecular diversity of viral proteins. J. Biol. Chem. 279:28443–28449PubMedCrossRefGoogle Scholar
  12. Gazzarrini S., Van Etten J.L., DiFrancesco D., Thiel G., Moroni A. 2002. Voltage-dependence of virus encoded miniature K+-channel Kcv. J. Membr. Biol. 187:15–25PubMedCrossRefGoogle Scholar
  13. Hamill O.P., Marty A., Neher E., Sakmann B., Sigworth F. 1981. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pfluegers Arch. 391:85–100CrossRefGoogle Scholar
  14. Hessa T., Kim H., Bihlmaier K., Lundin C., Boeckel J., Andersson H., Nilsson I.M., White S.H., von Heijne G. 2005. Recognition of transmembrane helices by endoplasmic reticulum translocon. Nature 433:377–382PubMedCrossRefGoogle Scholar
  15. Jiang Y., Lee A., Chen J., Cadene M., Chait B.T., MacKinnon R. 2002. Structure and mechanism of a calcium-gated potassium channel. Nature 417:515–522PubMedCrossRefGoogle Scholar
  16. Kang M., Moroni A., Gazzarrini S., DiFrancesco D., Thiel G., Severino M., Van Etten J.L. 2004. Small potassium ion channel proteins encoded by chlorella viruses. Proc. Natl. Acad. Sci. USA 101:5318–5324PubMedCrossRefGoogle Scholar
  17. Killian J.A., von Heijne G. 2000. How proteins adapt to a membrane-water interface. Trends Biochem. Sci. 25:429–434PubMedCrossRefGoogle Scholar
  18. Kuo A., Domene C., Johnson L.N., Doyle D.A., Vénien-Bryan C. 2005. Two different conformational states of the KirBac3.1 potassium channel revealed by electron crystallography. Structure 13:1463–1472PubMedCrossRefGoogle Scholar
  19. Kuo A., Gulbis J.M., Antcliff J.F., Rahman T., Lowe E.D., Zimmer J., Cuthbertson J., Ashcroft F.M., Ezaki T., Doyle D.A. 2003. Crystal structure of the potassium channel KirBac1.1 in the closed state. Science 300:1922–1926PubMedCrossRefGoogle Scholar
  20. Labro A.J., Raes A.L., Bellens I., Ottschytsch N., Snyders D.J. 2003. Gating of Shaker-type channels requires the flexibility of S6 caused by pralines. J. Biol. Chem. 278:50724–50731PubMedCrossRefGoogle Scholar
  21. Laskowski R.A., MacArthur M.W., Moss D.S., Thornton J.M. 1993. PROCHECK: A program to check the stereochemical quality of protein structures. J. Appl. Cryst. 26:283–291CrossRefGoogle Scholar
  22. Long S.B., Campbell E.B., Mackinnon R. 2005. Voltage sensor of Kv1.2: Structural basis of electromechanical coupling. Science 309:903–908PubMedCrossRefGoogle Scholar
  23. MacKinnon R. 2003. Potassium channels. FEBS Lett. 555:62–65PubMedCrossRefGoogle Scholar
  24. Marti-Renom M.A., Stuart A.C., Fiser A., Sanchez R., Melo F., Sali A. 2000. Comparative protein structure modeling of genes and genomes. Annu. Rev. Biophys. Biomol. Struct. 29:291–325PubMedCrossRefGoogle Scholar
  25. Moroni A., Viscomi C., Sangiorgio V., Pagliuca C., Meckel T., Horvath F., Gazzarrini S., Valbuzzi P., Van Etten J.L., DiFrancesco D., Thiel G. 2002. The short N-terminus is required for functional expression of the virus-encoded miniature K+ channel Kcv. FEBS Lett. 530:65–69PubMedCrossRefGoogle Scholar
  26. Ogielska E.M., Aldrich R.W. 1998. A mutation in S6 of Shaker potassium channels decreases the K+ affinity of an ion binding site revealing ion-ion interactions in the pore. J. Gen. Physiol. 112:243–257PubMedCrossRefGoogle Scholar
  27. O’Neil K.T., DeGrado W.F. 1990. A thermodynamic scale for the helix-forming tendencies of the commonly occurring amino acids. Science 250:646–651PubMedGoogle Scholar
  28. Perozo E., Cortes D.M., Cuello L.G. 1999. Structural rearrangements underlying K+-channel activation gating. Science 285:73–78PubMedCrossRefGoogle Scholar
  29. Perozo E., Cortes D.M., Sompornpisut P., Kloda A., Martinac B. 2002. Open channel structure of MscL and the gating mechanism of mechanosensitive channels. Nature 418:942–948PubMedCrossRefGoogle Scholar
  30. Plugge B., Gazzarrini S., Nelson M., Cerana R., Van Etten J.L., Derst C., DiFrancesco D., Moroni A., Thiel G. 2000. A potassium ion channel protein encoded by chlorella virus PBCV-1. Science 287:1641–1644PubMedCrossRefGoogle Scholar
  31. Sippl M.J. 1993. Recognition of errors in three-dimensional structures of proteins. Proteins 17:355–362PubMedCrossRefGoogle Scholar
  32. VanDongen A.M.J. 2004. K channel gating by an affinity-switching selectivity filter. Proc. Natl. Acad. Sci. USA 101:3248–3252CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Brigitte Hertel
    • 1
  • Sascha Tayefeh
    • 1
    • 2
  • Mario Mehmel
    • 1
  • Stefan M. Kast
    • 2
  • James Van Etten
    • 3
  • Anna Moroni
    • 4
  • Gerhard Thiel
    • 1
  1. 1.Institute of BotanyUniversity of Technology DarmstadtGermany
  2. 2.Physical ChemistryUniversity of Technology DarmstadtGermany
  3. 3.Department of Plant Pathology and Nebraska Center for VirologyUniversity of NebraskaLincoln
  4. 4.Dipartimento di BiologiaCNR-IBF & INFM: Consiglio Nazionale della Ricerche-Istituto di Biofisica e Istituto Nazionale Fisica della Material, Unità di Milano UniversitàItaly

Personalised recommendations