The Journal of Membrane Biology

, Volume 208, Issue 2, pp 155–169 | Cite as

Initiation of Sodium Spikelets in Basal Dendrites of Neocortical Pyramidal Neurons

  • B.A. Milojkovic
  • J.P. Wuskell
  • L.M. Loew
  • S.D. Antic


Cortical information processing relies critically on the processing of electrical signals in pyramidal neurons. Electrical transients mainly arise when excitatory synaptic inputs impinge upon distal dendritic regions. To study the dendritic aspect of synaptic integration one must record electrical signals in distal dendrites. Since thin dendritic branches, such as oblique and basal dendrites, do not support routine glass electrode measurements, we turned our effort towards voltage-sensitive dye recordings. Using the optical imaging approach we found and reported previously that basal dendrites of neocortical pyramidal neurons show an elaborate repertoire of electrical signals, including backpropagating action potentials and glutamate-evoked plateau potentials. Here we report a novel form of electrical signal, qualitatively and quantitatively different from backpropagating action potentials and dendritic plateau potentials. Strong glutamatergic stimulation of an individual basal dendrite is capable of triggering a fast spike, which precedes the dendritic plateau potential. The amplitude of the fast initial spikelet was actually smaller that the amplitude of the backpropagating action potential in the same dendritic segment. Therefore, the fast initial spike was dubbed “spikelet”. Both the basal spikelet and plateau potential propagate decrementally towards the cell body, where they are reflected in the somatic whole-cell recordings. The low incidence of basal spikelets in the somatic intracellular recordings and the impact of basal spikelets on soma-axon action potential initiation are discussed.


Prefrontal cortex Pyramidal neurons Basal Dendrites Synaptic integration Dendritic Spikes Potentials UP states 



S.A. is grateful to Guy Major for helpful discussions. This work was supported by NIH grants EB001963 and MH063503.


  1. Antic S.D. 2003. Action potentials in basal and oblique dendrites of rat neocortical pyramidal neurons. J. Physiol. 550:35–50CrossRefPubMedGoogle Scholar
  2. Antic S., Major G., Zecevic D. 1999. Fast optical recordings of membrane potential changes from dendrites of pyramidal neurons. J. Neurophysiol. 82:1615–1621PubMedGoogle Scholar
  3. Antic S., Wuskell J.P., Loew L., Zecevic D. 2000. Functional profile of the giant metacerebral neuron of Helix aspersa: temporal and spatial dynamics of electrical activity in situ. J. Physiol. 1:55–69CrossRefGoogle Scholar
  4. Antic S., Zecevic D. 1995. Optical signals from neurons with internally applied voltage-sensitive dyes. J. Neurosci. 15:1392–405PubMedGoogle Scholar
  5. Antic S.D., Radojicic M.S., Milojkovic B.A., Goldman-Rakic, P.S. 2003. Ionic basis of glutamate evoked spikes in basal dendrites of pyramidal neurons in prefrontal cortex. Soc. Neurosci. Abstr.:476.10Google Scholar
  6. Archie K.A., Mel B.W. 2000. A model for intradendritic computation of binocular disparity. Nat. Neurosci. 3:54–63CrossRefPubMedGoogle Scholar
  7. Ariav G., Polsky A., Schiller J. 2003. Submillisecond precision of the input-output transformation function mediated by fast sodium dendritic spikes in basal dendrites of CA1 pyramidal neurons. J. Neurosci 23:7750–7758PubMedGoogle Scholar
  8. Bekkers J.M. 2000. Distribution and activation of voltage-gated potassium channels in cell-attached and outside-out patches from large layer 5 cortical pyramidal neurons of the rat. J. Physiol. 3:611–620CrossRefGoogle Scholar
  9. Chen W.R., Midtgaard J., Shepherd G.M. 1997. Forward and backward propagation of dendritic impulses and their synaptic control in mitral cells. Science 278:463–467CrossRefPubMedGoogle Scholar
  10. Clements J.D. 1996. Transmitter timecourse in the synaptic cleft: its role in central synaptic function. Trends Neurosci. 19:163–71CrossRefPubMedGoogle Scholar
  11. Davila H.V., Cohen L.B., Salzberg B.M., Shrivastav B.B. 1974. Changes in ANS and TNS fluorescence in giant axons from Loligo. J. Membrane. Biol. 15:29–46CrossRefGoogle Scholar
  12. deCharms R.C., Zador A. 2000. Neural representation and the cortical code. Annu. Rev. Neurosci. 23:613–647CrossRefPubMedGoogle Scholar
  13. Djurisic M., Antic S., Chen W.R., Zecevic D. 2004. Voltage imaging from dendrites of mitral cells: EPSP attenuation and spike trigger zones. J. Neurosci. 24:6703–6714CrossRefPubMedGoogle Scholar
  14. Elston G.N. 2003. Cortex, cognition and the cell: New insights into the pyramidal neuron and prefrontal function. Cereb. Cortex. 13:1124–1138CrossRefPubMedGoogle Scholar
  15. Feldmeyer D., Lubke J., Silver R.A., Sakmann B. 2002. Synaptic connections between layer 4 spiny neurone-layer 2/3 pyramidal cell pairs in juvenile rat barrel cortex: physiology and anatomy of interlaminar signalling within a cortical column. J. Physiol. 538:803–822CrossRefPubMedGoogle Scholar
  16. Frick A., Magee J., Koester H.J., Migliore M., Johnston D. 2003. Normalization of Ca2+ signals by small oblique dendrites of CA1 pyramidal neurons. J. Neuro sci 23:3243–3250Google Scholar
  17. Golding N.L., Spruston N. 1998. Dendritic sodium spikes are variable triggers of axonal action potentials in hippocampal CAl pyramidal neurons. Neuron 21:1189–1200CrossRefPubMedGoogle Scholar
  18. Golding N.L., Staff N.P., Spruston N. 2002. Dendritic spikes as a mechanism for cooperative long-term potentiation. Nature 418:326–331CrossRefPubMedGoogle Scholar
  19. Goldstein S.S., Rail W. 1974. Changes of action potential shape and velocity for changing core conductor geometry. Biophys. J. 14:731–757PubMedGoogle Scholar
  20. Grinvald A., Salzberg B.M., Lev-Ram V., Hildesheim R. 1987. Optical recording of synaptic potentials from processes of single neurons using intracellular potentiometric dyes. Biophys. J. 51:643–651PubMedCrossRefGoogle Scholar
  21. Gulledge A.T., Kampa B.M., Stuart G.J. 2005. Synaptic integration in dendritic trees. J. Neurobiol. 64:75–90CrossRefPubMedGoogle Scholar
  22. Hassner, A., Birnbaum, D., L.M. 1984. Chargeshift probes of membrane potential. Synthesis. J. Org. Chem. 49:2546–2551Google Scholar
  23. Hausser M., Major G., Stuart G.J. 2001. Differential shunting of EPSPs by action potentials. Science 291:138–141CrossRefPubMedGoogle Scholar
  24. Hausser M., Spruston N., Stuart G.J. 2000. Diversity and dynamics of dendritic signaling. Science 290:739–744CrossRefPubMedGoogle Scholar
  25. Hossain W.A., Antic S.D., Yang Y., Rasband M.N., Merest O.K. 2005. Where is the spike generator of the cochlear nerve? Voltage-gated sodium channels in the mouse cochlea. J. Neurosci. 25:6857–6866CrossRefPubMedGoogle Scholar
  26. Konig P., Engel A.K., Singer W. 1996. Integrator or coincidence detector? The role of the cortical neuron revisited. Trends Neurosci. 19:130–137CrossRefPubMedGoogle Scholar
  27. Larkman A.U. 1991. Dendritic morphology of pyramidal neurones of the visual cortex of the rat: III. Spine distributions. J. Comp. Neurol. 306:332–343CrossRefPubMedGoogle Scholar
  28. Larkum M.E., Launey T., Dityatev A., Luscher H.R. 1998. Integration of excitatory postsynaptic potentials in dendrites of motoneurons of rat spinal cord slice cultures. J. Neurophysiol. 80:924–935PubMedGoogle Scholar
  29. Larkum M.E., Zhu J.J., Sakmann B. 2001. Dendritic mechanisms underlying the coupling of the dendritic with the axonal action potential initiation zone of adult rat layer 5 pyramidal neurons. J. Physiol. 533:447–466CrossRefPubMedGoogle Scholar
  30. Lewis B.L., O’Donnell P. 2000. Ventral tegmental area afferents to the prefrontal cortex maintain membrane potential ‘up’ states in pyramidal neurons via D(l) dopamine receptors. Cereb. Cortex 10:1168–1175CrossRefPubMedGoogle Scholar
  31. Loew L.M., Cohen L.B., Dix J., Fluhler E.N., Montana V., Salama G., Wu J.Y. 1992. A naphthyl analog of the aminostyryl pyridinium class of potentiometric membrane dyes shows consistent sensitivity in a variety of tissue, cell, and model membrane preparations. J. Membrane. Biol. 130:1–10CrossRefGoogle Scholar
  32. London M., Hausser M. 2005. Dendritic computation. Annu. Rev. Neurosci. 28:503–532CrossRefPubMedGoogle Scholar
  33. Mackenzie P.J., Murphy T.H. 1998. High safety factor for action potential conduction along axons but not dendrites of cultured hippocampal and cortical neurons. J. Neurophysiol. 80:2089–2101PubMedGoogle Scholar
  34. Magee J.C. 2000. Dendritic integration of excitatory synaptic input. Nat. Rev. Neurosci. 1:181–190CrossRefPubMedGoogle Scholar
  35. Magee J.C., Johnston D. 1995. Characterization of single voltage-gated Na+ and Ca2+ channels in apical dendrites of rat CA1 pyramidal neurons. J. Physiol. 487:67–90PubMedGoogle Scholar
  36. Migliore M., Shepherd G.M. 2002. Emerging rules for the distributions of active dendritic conductances. Nat. Rev. Neurosci. 3:362–370CrossRefPubMedGoogle Scholar
  37. Milojkovic B.A., Radojicic M.S., Antic S.D. 2005. A strict correlation between dendritic and somatic plateau depolarizations in the rat prefrontal cortex pyramidal neurons. J. Neurosci. 25:3940–3951CrossRefPubMedGoogle Scholar
  38. Milojkovic B.A., Radojicic M.S., Goldman-Rakic P.S., Antic S.D. 2004. Burst generation in rat pyramidal neurones by regenerative potentials elicited in a restricted part of the basilar dendritic tree. J. Physiol. 558:193–211CrossRefPubMedGoogle Scholar
  39. Nunez A., Amzica F., Steriade M. 1993. Electrophysiology of cat association cortical cells in vivo: intrinsic properties and synaptic responses. J. Neurophysiol. 70:418–430PubMedGoogle Scholar
  40. Oakley J.C., Schwindt P.C., Grill W.E. 2001a. Dendritic calcium spikes in layer 5 pyramidal neurons amplify and limit transmission of ligand-gated dendritic current to soma. J. Neurophysiol. 86:514–527Google Scholar
  41. Oakley J.C., Schwindt P.C., Grill W.E. 2001b. Initiation and propagation of regenerative Ca2+ dependent potentials in dendrites of layer 5 pyramidal neurons. J. Neurophysiol. 86:503–513Google Scholar
  42. Parnas I., Hochstein S., Parnas H. 1976. Theoretical analysis of parameters leading to frequency modulation along an inhomogeneous axon. J. Neurophysiol. 39:909–923PubMedGoogle Scholar
  43. Poirazi P., Brannon T., Mel B.W. 2003. Pyramidal neuron as two-layer neural network. Neuron 37:989–999CrossRefPubMedGoogle Scholar
  44. Poznanski R.R. 2002. Dendritic integration in a recurrent network. J. Integr. Neurosci. 1:69–99CrossRefPubMedGoogle Scholar
  45. Ramon F., Joyner R.W., Moore J.W. 1975. Propagation of action potentials in inhomogeneous axon regions. Fed. Proc. 34:1357–1363PubMedGoogle Scholar
  46. Rapp M., Yarom Y., Segev I. 1996. Modeling back propagating action potential in weakly excitable dendrites of neocortical pyramidal cells. Proc. Natl. Acad. Sci. USA 93:11985–11990CrossRefPubMedGoogle Scholar
  47. Regehr W.G., Tank D.W. 1990. Postsynaptic NMDA receptor-mediated calcium accumulation in hippocampal CA1 pyramidal cell dendrites. Nature 345:807–810CrossRefPubMedGoogle Scholar
  48. Salzberg B.M., Grinvald A., Cohen L.B., Davila H.V., Ross W.N. 1977. Optical recording of neuronal activity in an invertebrate central nervous system: simultaneous monitoring of several neurons. J. Neurophysiol. 40:1281–1291PubMedGoogle Scholar
  49. Schiller J., Major G., Koester H.J., Schiller Y. 2000. NMDA spikes in basal dendrites of cortical pyramidal neurons. Nature 404:285–289CrossRefPubMedGoogle Scholar
  50. Schmitz D., Schuchmann S., Fisahn A., Draguhn A., Buhl E.H., Petrasch-Parwez E., Dermietzel R., Heinemann U., Traub R.D. 2001. Axo-axonal coupling, a novel mechanism for ultrafast neuronal communication. Neuron 31: 831–840CrossRefPubMedGoogle Scholar
  51. Shepherd G.M. 2004. The synaptic organization of the brain. Oxford Univ. Press, New YorkGoogle Scholar
  52. Shipp S., Zeki S. 2002. The functional organization of area V2, I: specialization across stripes and layers. Vis. Neurosci. 19:187–210CrossRefPubMedGoogle Scholar
  53. Softky W. 1994. Sub-millisecond coincidence detection in active dendritic trees. Neuroscience 58:13–41CrossRefPubMedGoogle Scholar
  54. Spruston N., Schiller Y., Stuart G., Sakmann B. 1995. Activity-dependent action potential invasion and calcium influx into hippocampal CA1 dendrites. Science 268:297–300PubMedGoogle Scholar
  55. Steriade M., Nunez A., Amzica F. 1993a. Intracellular analysis of relations between the slow (< 1 Hz) neocortical oscillation and other sleep rhythms of the electroencephalogram. J. Neurosci. 13:3266–3283Google Scholar
  56. Steriade M., Nunez A., Amzica F. 1993b. A novel slow (< 1 Hz) oscillation of neocortical neurons in vivo: depolarizing and hyperpolarizing components. J. Neurosci. 13:3252–3265Google Scholar
  57. Stuart G., Schiller J., Sakmann B. 1997. Action potential initiation and propagation in rat neocortical pyramidal neurons. J. Physiol. 505:617–632CrossRefPubMedGoogle Scholar
  58. Stuart G., Spruston N. 1998. Determinants of voltage attenuation in neocortical pyramidal neuron dendrites. J. Neurosci. 18:3501–3510PubMedGoogle Scholar
  59. Stuart G., Sakmann B. 1994. Active propagation of somatic action potentials into neocortical pyramidal cell dendrites. Nature 367:69–72CrossRefPubMedGoogle Scholar
  60. Tauc L. 1962. Site of origin and propagation in spike in the giant neuron of Aplysia. J. Gen. Physiol. 45:1077–1097CrossRefPubMedGoogle Scholar
  61. Thomson A.M., Deuchars L, West D.C. 1993. Large, deep layer pyramid-pyramid single axon EPSPs in slices of rat motor cortex display paired pulse and frequency-dependent depression, mediated presynaptically and self- facilitation, mediated postsynaptically. J. Neurophysiol. 70:2354–2369PubMedGoogle Scholar
  62. Timofeev I., Grenier F., Bazhenov M., Sejnowski T.J., Steriade M. 2000. Origin of slow cortical oscillations in deafferented cortical slabs. Cereb. Cortex 10:1185–1199CrossRefPubMedGoogle Scholar
  63. Trettel J., Fortin D.A., Levine E.S. 2004. Endocannabinoid signalling selectively targets perisomatic inhibitory inputs to pyramidal neurones in juvenile mouse neocortex. J.Physiol. 556:95–107CrossRefPubMedGoogle Scholar
  64. Trimmer J.S., Rhodes K.J. 2004. Localization of voltage-gated ion channels in mammalian brain. Annu. Rev. Physiol. 66:477–519CrossRefPubMedGoogle Scholar
  65. Tsodyks M.V., Markram H. 1997. The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability. Proc. Natl. Acad. Sci. USA 94:719–723CrossRefPubMedGoogle Scholar
  66. Vetter P., Roth A., Hausser M. 2001. Propagation of action potentials in dendrites depends on dendritic morphology. J. Neurophysiol. 85:926–937PubMedGoogle Scholar
  67. Waters J., Helmchen F. 2004. Boosting of action potential backpropagation by neocortical network activity in vivo. J. Neurosci. 24:11127–11136CrossRefPubMedGoogle Scholar
  68. Wei D.S., Mei Y.A., Bagal A., Kao J.P., Thompson S.M., Tang C.M. 2001. Compartmentalized and binary behavior of terminal dendrites in hippocampal pyramidal neurons. Science 293:2272–2275CrossRefPubMedGoogle Scholar
  69. Zilberter Y. 2000. Dendritic release of glutamate suppresses synaptic inhibition of pyramidal neurons in rat neocortex. J. Physiol. 528:489–496CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • B.A. Milojkovic
    • 1
  • J.P. Wuskell
    • 2
  • L.M. Loew
    • 2
  • S.D. Antic
    • 3
  1. 1.Department of NeuroscienceErasmus MC Dr. Molewaterplein 50Netherlands
  2. 2.Department of Cell BiologyUConn Health CenterUSA
  3. 3.Department of NeuroscienceL-4000, UConn Health CenterFarmingtonUSA

Personalised recommendations