The Journal of Membrane Biology

, Volume 206, Issue 2, pp 129–139 | Cite as

Membrane Effects of the n-3 Fish Oil Fatty Acids, which Prevent Fatal Ventricular Arrhythmias

  • A. LeafEmail author
  • Y.-F. Xiao
  • J.X. Kang
  • G.E. Billman


Fish oil fatty acids are known to exert beneficial effects on the heart and vascular systems. We have studied the membrane effects on ion channel conductance by the n-3 fish oil fatty acids that account for these beneficial effects. We have confirmed that these fatty acids prevent fatal cardiac arrhythmias in a reliable dog model of sudden cardiac death. This finding was followed by experiments indicating that the n-3 fatty acids electrically stabilize heart cells and do so largely through modulation of the fast voltage-dependent Na+ currents and the L-type Ca2+ channels in a manner, which makes the heart cells resistant to arrhythmias. Others and we have demonstrated that these membrane effects on the heart can prevent fatal cardiac arrhythmias in humans.


Ouabain Heart Cell Antiarrhythmic Action Fatal Arrhythmia Beat Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Bang H.O., Dyerberg J., Horne N. 1976. The composition of food consumed by Greenland Eskimos. Acta Med. Scand. 200:69–73PubMedGoogle Scholar
  2. Billman G.E., Hallaq H., Leaf A. 1994. Prevention of ischemia-induced ventricular fibrillation by ω3 fatty acids. Proc. Natl. Acad. Sci. USA 91:4427–4430PubMedGoogle Scholar
  3. Billman G.E., Kang J.X., Leaf A. 1997. Prevention of ischemia-induced cardiac sudden death by n-3 polyunsaturated fatty acids in dogs. Lipids 32:1161–1168PubMedGoogle Scholar
  4. Billman G.E., Kang J.X., Leaf A. 1999. Prevention of sudden cardiac death by dietary pure ω-3 polyunsaturated fatty acids in dogs. Circ. 99:2452–2457Google Scholar
  5. Bogdanov K., Spurgeon H., Leaf A., Lakatta E. 1995. Inhibitory effects of ω-3 fatty acids on transient outward K+ currents. Biophys. J. 68:A108Google Scholar
  6. Burr M., Gilbert J.F., Holliday R.M., Elwood P.C., Fehily A.M., Rogers S., Sweetnam P.M., Deadman N.M. 1989. Effects of changes in fat, fish, and fibre intakes on death and Myocardial reinfarction: Diet and Reinfarction Trial (DART). Lancet 334:757–761CrossRefGoogle Scholar
  7. Corr P.B., Gross R.W., Sobel B.E. 1984. Amphipathic metbolites and membrane dysfunction in ischemic myocardium. Circ. Res. 55:135–154PubMedGoogle Scholar
  8. Corr P.B., Yamada K.A., Creer M.H., Sharma A.D., Sobel B.F. 1987. Lysophosphatidylcholine and Fibrillation early after onset of ischemia. Mol. Cell. Cardiol. 19(Suppl V):45–53Google Scholar
  9. Dyerberg J., Bang H.O., Stofferson E., Moncada S., Vane J.R. 1978. Eicosapentaenoic acid and prevention of thrombosis and atherosclerosis? Lancet 2:117–119PubMedGoogle Scholar
  10. Force T., Milani R., Hibberd P., Lorenz R., Ueddelhove W., Leaf P.C. 1991. Aspirin-induced decline in prostacyclin is patients with coronary artery disease is due to endoperoxide shift. Circulation 84:2286–2293PubMedGoogle Scholar
  11. Goldman, L. 1995. Sodium channel inactivation from closed state: evidence for an intrinsic voltage dependancy. J. Biophys. 69: 2369–2377Google Scholar
  12. Hallaq H., Leaf A. 1993. Recent trends in n-3 fatty acid research: Cardiovascular Diseases. In: n-3 Fatty Acids and Vascular Disease. R. De Caterina, S. Endres, S.D. Kristensen, E.B. Schmidt, eds. Bi & Gi Publishers-Via Ca’ di Cozzi, Verona, ItalyGoogle Scholar
  13. Hille B. 1997. Local anesthetics: hydrophilic and hydrophobic pathways for the drug-receptor reaction. J. Gen. Physiol. 69:497–515Google Scholar
  14. Honore E., Bahanin J., Attali B., Lesage F., Lazdunski M. 1994. External blockade of the major delayed-rectifier K+ by polyunsaturated fatty acids. Proc. Natl. Acad. Sci. USA 91:1937–1941PubMedGoogle Scholar
  15. Kang J.X., Leaf A. 1994a. Effects of long-chain polyunsaturated fatty acids on the contraction of neonatal rat cardiac myocytes. Proc. Natl. Acad. Sci. USA 91:9886–9890Google Scholar
  16. Kang J.X., Leaf A. 1994b. Prevention and termination of the β-adrenergic agonist-induced arrhythmias by free polyunsaturated fatty acids in neonatal rat cardiacmyocytes. Biochem. Biophys. Res. Comm. 208:629–636Google Scholar
  17. Kang J.X., Leaf A. 1996. Prevention and termination of arrhythmias induced by lysophosphatidyl choline and acylcarnitine in neonatal rat cardiac myocytes by free omega-3 polyunsaturated fatty acids. Eur. J. Pharmacol. 297:97–96CrossRefPubMedGoogle Scholar
  18. Kang J.X., Xiao Y.F., Leaf A. 1995. Free long-chain polyunsaturated fatty acids reduce membrane electrical excitability in neonatal rat cardiac myocytes. Proc. Natl. Acad. Sci. USA 92:3997–4001PubMedGoogle Scholar
  19. Kang J.X., Li Y., Leaf A. 1997. Regulation of sodium gene expression by class 1 antiarrhythmic drugs and n-3 polyunsaturated fatty acids in cultured neonatal rat cardiomyocytes. Proc. Natl. Acad. Sci. USA 94:2724–2728PubMedGoogle Scholar
  20. Lawrence J.H., Yue D.T., Rose W.C., Marban E. 1991. Sodium channel activation from resting states in guinea-pig ventricular myocytes. J. Physiol. 443:629–650PubMedGoogle Scholar
  21. Leaf A., Weber P.C. 1987. A new era for science in nutrition. Am. J. Clin. Nutr. 45:1048–1053PubMedGoogle Scholar
  22. Leaf, A., Albert, C.M., Josephson, M., Steinhaus, D., Kluger, J., Kang, J.X., Cox, B., Zhang, H., Schoenfeld, D. 2005. Prevention of fatal arrhythmias in high risk subjects with fish oil n-3 fatty acids. Circulation 112: 2762–2768CrossRefPubMedGoogle Scholar
  23. Li Y., Kang J.X., Leaf A. 1997. Differential effects of various eicosanoids on the production or prevention of arrhythmias in cultured neonatal rat cardiac myocytes. Prostaglandins 54:511–530CrossRefPubMedGoogle Scholar
  24. Marchioli R., Barzi F., Bomba E., Chieffo C., Di Gregorio D., Di Mascio E., Franzosi M.G., Gertaci E., Levantesi G., Maggioni A.P., Mantini L., Marfisi R.M., Mastrogiuseppe G., Mininni N., Nicolosi G.L., Santini M., Schweiger C., Tavazzi L., Tognoni G., Tucci C., Valagussa on behalf of the GISSI-Prevenzione Investigators. 2002. Early protection against sudden death by n-3 polyunsaturated fatty acids after myocardial infarction. Time course analysis of the results of the Gruppo Italiano per lo Studio della sopravvivenza nell ‘Infarto Miocardico (GISSI)-Prevenzione’. Circulation 105:1897–1903CrossRefPubMedGoogle Scholar
  25. McLennan P.L., Abeywardena M.Y., Charnock J.S. 1998. Dietary fish oil prevents ventricular fibrillation following coronary artery occlusion and reperfusion. Am. Heart J. 116:709–717Google Scholar
  26. McLennan P.L. 1993. Relative effects of dietary saturated, monounsaturated, and polyunsaturated fatty acids on cardiac arrhythmias in rats. Am. J. Clin. Nutr. 57:207–212PubMedGoogle Scholar
  27. McLennan P.L., Bridle T.M., Abeywardena M.Y., Charnock J.S. 1992. Dietary lipid modulation of ventricular fibrillation threshold in the marmoset monkey. Am. Heart J. 123:1555–1561CrossRefPubMedGoogle Scholar
  28. Pinto J.M.B., Boyden P.A. 1999. Review: Electrical remodeling in ischemia and infarction. Cardiovascular Res. 42:284–297CrossRefGoogle Scholar
  29. The Cardiac Arthythmia Suppression Trial Investigators. 1989. Preliminery report. Effect of encanaide and flecanaide on mortality. N. Engl. J. Med. 321: 406–412Google Scholar
  30. Xiao Y.-F., Kang J.X., Morgan J.P., Leaf A. 1995. Blocking effects polyunsaturated fatty acids on Na+ channels in neonatal rat ventricular myocytes. Proc. Nat. Acad. Sci. USA 92:1000–11004Google Scholar
  31. Xiao Y.-F., Gomez A.M., Morgan J.P., Lederer W.J., Leaf A. 1997. Suppression of voltage gated L-type Ca2+ currents by polyunsaturated fatty acids in adult and neonatal rat cardiac myocytes. Proc. Natl. Acad. Sci. USA 94:4182–4187PubMedGoogle Scholar
  32. Xiao T.-F., Morgan J.P., Leaf A. 2002. Effects of polyunsaturated fatty acids on cardiac voltage-activated K+ currents in adult ferret cardiomyocytes. Acta Physiol. Sinica 54:271–281PubMedGoogle Scholar
  33. Xiao X.-F., Wright S.N., Wang G.K., Morgan J.P., Leaf A. 1998. Fatty acids suppress voltage-gated Na+ currents in HEK293t cells transfected with the α-subunit of the human cardiac Na+ channel. Proc. Natl. Acad. Sci. USA 95:2680–2685PubMedGoogle Scholar
  34. Xiao X.-F., Wright S.N., Wang G.K., Morgan J.P., Leaf A. 2000. Coexpression with β1-subunit modifies the kinetics and fatty acid block of hH1ab Na+ channels. Am. J. Physiol. 279:H35–H46Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Department of MedicineHarvard Medical School and the Massachusetts General HospitalCharlestownUSA
  2. 2.Beth Israel Deaconess Medical Center and Harvard Medical SchoolBostonUSA
  3. 3.Department of Physiology and Cell BiologyThe Ohio State UniversityColumbusUSA
  4. 4.Medtronic Inc.MinneapolisUSA

Personalised recommendations