Advertisement

The Journal of Membrane Biology

, Volume 206, Issue 2, pp 141–154 | Cite as

The Antiarrhythmic Effect of n-3 Polyunsaturated Fatty Acids: Modulation of Cardiac Ion Channels as a Potential Mechanism

Article

Abstract

Sudden cardiac death remains one of the most serious medical challenges in Western countries. Increasing evidence in recent years has demonstrated that the n-3 polyunsaturated fatty acids (PUFAs) can prevent fatal ventricular arrhythmias in experimental animals and probably in humans. Dietary supplement of fish oils or intravenous infusion of the n-3 PUFAs prevents ventricular fibrillation caused by ischemia/reperfusion. Similar antiarrhythmic effects of these fatty acids are also observed in cultured mammalian cardiomyocytes. Based on clinical observations and experimental studies in vitro and in vivo, several mechanisms have been postulated for the antiarrhythmic effect of the n-3 PUFAs. The data from our laboratory and others have shown that the n-3 PUFAs are able to affect the activities of cardiac ion channels. The modulation of channel activities, especially voltage-gated Na+ and L-type Ca2+ channels, by the n-3 fatty acids may explain, at least partially, the antiarrhythmic action. It is not clear, however, whether one or more than one mechanism involves the beneficial effect of the n-3 PUFAs on the heart. This article summarizes our recent studies on the specific effects of the n-3 PUFAs on cardiac ion channels. In addition, the effect of the n-3 PUFAs on the human hyperpolarization-activated cyclic-nucleotide-modulated channel is presented.

Keywords

Cardiac arrhythmia Eicosapentaenoic acid Docosahexaenoic acid Hyperpolarization-activated cyclic-nucleotide-modulated channel Mutation 

Notes

Acknowledgements

Our studies have been supported in part by grants DK38165 from NIDDK and by HL62284 from NHLBI of the National Institutes of Health (AL) and American Heart Association (Y-FX). We wish to thank our colleagues who have contributed to the project for several years.

References

  1. 1.
    Albert C.M., Hennekens C.H., O’Donnell C.J., Ajani U.A., Carey V.J., Willett W.C., Ruskin J.N., Manson J.E. 1998. Fish consumption and risk of sudden cardiac death. JAMA 279:23–28PubMedGoogle Scholar
  2. 2.
    Albert C.M., Campos H., Stampfer M.J., Ridker P.M., Manson I.E., Willett W.C., Ma J. 2002. Blood levels of long-chain n-3 fatty acids and the risk of sudden death. N. Engl. J. Med. 346:1113–1118PubMedGoogle Scholar
  3. 3.
    An R.H., Wang X.L., Kerem B., Benhorin J., Medina A., Goldmit M., Kass R.S. 1998. Novel LQT-3 mutation affects Na+ channel activity through interactions between alpha- and betal-subunits. Circ. Res. 83:141–146PubMedGoogle Scholar
  4. 4.
    Ander B.P., Weber A.R., Rampersad P.P, Gilchrist J.S.C., Pierce G.N., Lukas A. 2004. Dietary flaxseed protects against ventricular fibrillation induced by ischemia-reperfusion in normal and hypercholesterolemic rabbits. J. Nutr. 134:3250–3256PubMedGoogle Scholar
  5. 5.
    Andersen O.S., Nielsen C., Maer A.M., Lundbaek J.A., Goulian M., Koeppe II, R.E. 1999. Ion channels as tools to monitor lipid bilayer-mernbrane protein interactions: gramicidin channels as molecular force transducers. Meth. Enzymol. 294:208–224PubMedGoogle Scholar
  6. 6.
    Bang H.O., Dyerberg J., Nielsen A. 1971. Plasma lipid and lipoprotein pattern in Greenlandic West-coast Eskimos. Lancet. 1:1143–1145PubMedGoogle Scholar
  7. 7.
    Billman G.E., Kang J.X., Leaf A. 1999. Prevention of sudden cardiac death by dietary pure {omega}-3 polyunsaturated fatty acids in dogs. Circulation 99:2452–2457PubMedGoogle Scholar
  8. 8.
    Billman G.E., Hallaq H., Leaf A. 1994. Prevention of ischemia-induced arrhythmias by n-3 fatty acids. Proc. Natl. Acad. Sci. USA 91:4427–4430PubMedGoogle Scholar
  9. 9.
    Bogdanov K.Y., Spurgeon H.A., Vinogradova T.M., Lakatta E.G. 1998. Modulation of the transient outward current in adult rat ventricular myocytes by polyunsaturated fatty acids. Am. J. Physiol. 274:H571–H579PubMedGoogle Scholar
  10. 10.
    Calo L., Bianconi L., Colivicchi F., Lamberti F., Loricchio M.L., de Ruvo E., Meo A., Pandozi C., Staibano M., Santini M. 2005. N-3 Fatty acids for the prevention of atrial fibrillation after coronary artery bypass surgery: a randomized, controlled trial. J. Am. Coll. Cardiol. 45:1723–1728CrossRefPubMedGoogle Scholar
  11. 11.
    Catterall W.A. 1989. Structure and function of voltage-sensitive ion channels. Science 242:50–61Google Scholar
  12. 12.
    Catterall W.A. 1992. Cellular and molecular biology of voltage-gated sodium channels. Physiol. Rev. 72:S15–S48PubMedGoogle Scholar
  13. 13.
    Cheng T.O., Dallongeville J., Montaye M., Amouyel P., Yarnell J., Evans A., Ducimetiere P., Bingham A., Luc G., Arveiler D., Mass B., Ferrieres J., Ruidavets J.-B. 2004. Fish consumption and coronary artery disease in China * Response. Circulation 109:e155–e156PubMedGoogle Scholar
  14. 14.
    Chung S., Jung W., Lee M.Y. 1999. Inward and outward rectifying potassium currents set membrane potentials in activated rat microglia. Neurosci. Lett. 262:121–124CrossRefPubMedGoogle Scholar
  15. 15.
    Clarkson C.W., Hondeghem L.M. 1985. Mechanism for bupivacaine depression of cardiac conduction: fast block of sodium channels during the action potential with slow recovery from block during diastole. Anesthesiology 62:396–405PubMedGoogle Scholar
  16. 16.
    De Lorgeril M., Renaud S., Mamelle N., Salen P., Martin J.L., Monjaud L, Guidollet J., Touboul P., Delaye J. 1994. Mediterranean alpha-linolenic acid-rich diet in secondary prevention of coronary heart disease. Lancet 343:1454–1459PubMedGoogle Scholar
  17. 17.
    Dyerberg J., Bang H.O., Hjorne N. 1975. Fatty acid composition of the plasma lipids in Greenland Eskimos. Am. J. Clin. Nutr. 28:958–966PubMedGoogle Scholar
  18. 18.
    Evans S.M., Cone E.J., Henningfield J.E. 1996. Arterial and venous cocaine plasma concentrations in humans: relationship to route of administration, cardiovascular effects and subjective effects. J. Pharmacol. Exp. Ther. 279:1345–1356PubMedGoogle Scholar
  19. 19.
    Girshman J., Greathouse D.V., Koeppe II R.E., Andersen O.S. 1997. Gramicidin channels in phospholipid bilayers with unsaturated acyl chains. Biophys. J. 73:1310–1319PubMedGoogle Scholar
  20. 20.
    GISSI-Prevention Investigators. 1999. Dietary supplementation with n-3 polyunsaturated fatty acids and vitamin E after myocardial infarction: results of the GISSI-Prevenzione trial. Gruppo Italiano per lo Studio della Soprawivenza nell'Infarto miocardico. Lancet 354:447–455Google Scholar
  21. 21.
    Gomez A.M., Cheng H., Lederer W.J., Bers D.M. 1996. Ca2+ diffusion and sarcoplasmic reticulum transport both contribute to [Ca2+]i decline during Ca2+ sparks in rat ventricular myocytes. J. Physiol. 496:575–581PubMedGoogle Scholar
  22. 22.
    Hallaq H., Smith T. W., Leaf A. 1992. Modulation of dihydropyridine-sensitive calcium channels in heart cells by fish oil fatty acids. Proc. Natl. Acad. Sci. USA 89:1760–1764PubMedGoogle Scholar
  23. 23.
    Honore E., Barhanin J., Attali B., Lesage R, Lazdunski M. 1994. External blockade of the major cardiac delayed-reetifier K+ (Kv1.5) by polyunsaturated fatty acids. Proc. Natl. Acad. Sci. USA 91:1937–1941PubMedGoogle Scholar
  24. 24.
    Kang J.X., Leaf A. 1994. Effects of long-chain polyunsaturated fatty acids on the contraction of neonatal rat cardiac myocytes. Proc. Natl. Acad. Sci. USA 91:9886–9890PubMedGoogle Scholar
  25. 25.
    Kang J.X., Leaf A. 1996. Prevention and termination of arrhythmias induced by lysophosphatidyl choline and acylcarnitine in neonatal rat cardiac myocytes by free omega-3 polyunsaturated fatty acids. Eur. J. Pharmacol. 297:97–106CrossRefPubMedGoogle Scholar
  26. 26.
    Kang J.X., Xiao Y.-F., Leaf A. 1995. Free long-chain polyunsaturated fatty acids reduce membrane electrical excitability in neonatal rat cardiac myocytes. Proc. Natl. Acad Sci. USA 92:3997–4001PubMedGoogle Scholar
  27. 27.
    Kang J.X., Leaf A. 1996. Evidence that free polyunsaturated fatty acids modify Na+ channels by directly binding to the channel protein. Proc. Natl. Acad Sci. USA 93:3542–3546CrossRefPubMedGoogle Scholar
  28. 28.
    Klausner R.D., Kleinfeld A.M., Hoover R.L., Karnovsky M.J. 1980. Lipid domains in membranes. J. Biol. Chem. 255:1286–1295PubMedGoogle Scholar
  29. 29.
    Leaf A., Kang J.X., Xiao Y.-F., Billman G.E. 2003. Clinical prevention of sudden cardiac death by n-3 polyunsaturated fatty acids and mechanism of prevention of arrhythmias by n-3 fish oils. Circulation 107:2646–2652CrossRefPubMedGoogle Scholar
  30. 30.
    Leaf A., Xiao Y.-F., Kang J.X., Billman G.E. 2003. Prevention of sudden cardiac death by n-3 polyunsaturated fatty acids. Pharmacol. Ther. 98:355–377CrossRefPubMedGoogle Scholar
  31. 31.
    Leaf A., Xiao Y.-F. 2001. The modulation of ionic currents in excitable tissues by n-3 polyunsaturated fatty acids. J. Membrane Biol. 184:263–271CrossRefGoogle Scholar
  32. 32.
    Ludwig A., Zong X., Jeglitsch M., Hofmann F., Biel M. 1998. A family of hyperpolarization-activated mammalian cation channels. Nature 393:587–591PubMedGoogle Scholar
  33. 33.
    Lundbaek J.A., Maer A.M., Andersen O.S. 1997. Lipid bilayer energy, curvature stress and assembly of gramicidin channels. Biochemistry 36:5695–5701PubMedGoogle Scholar
  34. 34.
    Lundbaek J.A., Birn P., Hansen A.J., Sogaard R., Nielsen C., Girshman J., Bruno M.J., Tape S.E., Egebjerg J., Greathouse D.V., Mattice G.L., Koeppe II, R.E., Andersen O.S. 2004. Regulation of sodium channel function by bilayer elasticity: The importance of hydrophobic coupling. effects of micelle-forming amphiphiles and cholesterol. J. Gen. Physiol 123:599–621CrossRefPubMedGoogle Scholar
  35. 35.
    Makielski J.C., Limberis J.T., Chang S.Y., Fan Z., Kyle J.W. 1996. Coexpression of β1 with cardiac sodium channel α subunits in oocytes decreases lidocaine block. Mol. Pharmacol. 49:30–39PubMedGoogle Scholar
  36. 36.
    Marchioli R., Valagussa F., et al. on behalf of GISSI-Prevenzione investigators. 2000. The results of the GISSI-Prevenzione trial in the general framework of secondary prevention. Eur. Heart J. 21:949–952CrossRefPubMedGoogle Scholar
  37. 37.
    McLennan P.L. 1993. Relative effects of dietary saturated, monounsaturated, and polyunsaturated fatty acids on cardiac arrhythmias in rats. Am. J. Clin. Nutr. 57:207–212PubMedGoogle Scholar
  38. 38.
    McLennan P.L., Bridle T.M, Abeywardena M.Y., Charnock J.S. 1993. Comparative efficacy of n-3 and n-6 polyunsaturated fatty acids in modulating ventricular fibrillation threshold in marmoset monkeys. Am. J. Clin. Nutr. 58:666–669PubMedGoogle Scholar
  39. 39.
    Mouhaffel A.H., Madu E.C., Satmary W.A., Fraker T.D. 1995. Cardiovascular complications of cocaine: review. Chest 107:1426–1434PubMedGoogle Scholar
  40. 40.
    Mozaffarian D., Ascherio A., Hu F.B., Stampfer M.J., Willett W.C., Siscovick D.S., Rimm E.B. 2005. Interplay between different polyunsaturated fatty acids and risk of coronary heart disease in men. Circulation 111:157–164CrossRefPubMedGoogle Scholar
  41. 41.
    Mubagwa K., Flameng W., Carmeliet E. 1994. Resting and action potentials of nonischemic and chronically ischemic human ventricular muscle. J. Cardiovasc. Electrophysiol 5:659–671PubMedGoogle Scholar
  42. 42.
    Negretti N., Pérez M.R., Walker D., O’Neill S.C. 2000. Inhibition of sarcoplasmic reticulum function by polyunsaturated fatty acids in intact, isolated myocytes from rat ventricular muscle. J. Physiol. 523:367–375CrossRefPubMedGoogle Scholar
  43. 43.
    Noma A., Nakayama T., Kurachi Y, Irisawa H. 1984. Resting K conductances in pacemaker and non-pacemaker heart cells of the rabbit. Jpn. J. Physiol. 34:245–254PubMedGoogle Scholar
  44. 44.
    Pancrazio J.J., Frazer M.J., Lynch C. 1993. Barbiturate anesthetics depress the resting K+ conductance of myocardium. J. Pharmacol. Exp. Ther. 265:358–365PubMedGoogle Scholar
  45. 45.
    Pepe S., Bogdanov K., Hallaq H., Spurgeon H., Leaf A., Lakatta E 1994. ω3 Polyunsaturated fatty acid modulates dihydropyridine effects on L-type Ca2+ channels, cytosolic Ca2+, and contraction in adult rat cardiac myocytes. Proc. Natl. Acad. Sci. USA 91:8832–8836PubMedGoogle Scholar
  46. 46.
    Pound E.M., Kang J.X., Leaf A. 2001. Partition of polyunsaturated fatty acids, which prevent arrhythmias, into phospholipids cell membranes. J. Lipid Research 42:346–351Google Scholar
  47. 47.
    Qu Y., Isom L.L., Westenbroek R.E., Rogers J.C., Tanada T.N., McCormick K.A., Scheuer T., Catterall W.A. 1995. Modulation of cardiac Na+ channel expression in Xenopus oocytes by β1 subunit. J. Biol. Chem. 270:25696–25701PubMedGoogle Scholar
  48. 48.
    Santoro B., Liu D.T., Yao H., Bartsch D., Kandel E.R., Siegelbaum S.A., Tibbs G.R. 1998. Identification of a gene encoding a hyperpolarization-activated pacemaker channel of brain. Cell 93:717–729CrossRefPubMedGoogle Scholar
  49. 49.
    Schrepf R., Limmer, t., Claus Weber P., Theisen K., Sellmayer A. 2004. Immmediate effects of n-3 fatty acid infusion on the induction of sustained ventricular tachycardia. Lancet 363:1412–1413CrossRefGoogle Scholar
  50. 50.
    Singh R.B., Niaz M.A., Sharma J.P., Kumar R., Soshin M. 1997. Randomized, double-blind, placebo-controlled trial of fish oil and mustard oil in patients with suspected acute myocardial infarction; the India experiment of infarct survival. Cardiovasc. Drugs Ther. 3:485–491Google Scholar
  51. 51.
    Siscovick D.S., Raghunathan I.E., King I., Weinmann S., Wicklund K.G., Albright J., Bovbjerg V., Arbogast P., Smith H., Kushi L.H., Cobb L.A., Copass M.K., Psaty B.M., Lenaite R., Retzlaff B., Childs M., Knopp R.H. 1995. Dietary intake and cell membrane levels of long-chain n-3 polyunsaturated fatty acids and the risk of primary cardiac arrest. JAMA 274:1363–1367CrossRefPubMedGoogle Scholar
  52. 52.
    Talavera K., Staes M., Janssens A., Droogmans G., Nilius B. 2004. Mechanism of arachidonic acid modulation of the T-type Ca2+ channel {alpha} 1G. J. Gen. Physiol 124:225–238CrossRefPubMedGoogle Scholar
  53. 53.
    Tiknonov, D.B., Zhorov, B.S. 2005. Sodium channel activators: Model of binding inside the pore and a possible mechanism of action. FEBS Lett. 579: 4207–4212Google Scholar
  54. 54.
    Wang O.K., Russell C., Wang S.Y. 2003. State-dependent block of wild-type and inactivation-deficient Na+ channels by flecainide. J. Gen. Physiol. 122:365–374CrossRefPubMedGoogle Scholar
  55. 55.
    Xiao Y.-F., Kang J.X., Morgan J.P., Leaf A. 1995. Blocking effects of polyunsaturated fatty acids on Na+ channels of neonatal rat ventricular myocytes. Proc.Natl Acad. Sci. USA 92:1000–11004Google Scholar
  56. 56.
    Xiao Y.-F., Gomez A.M., Morgan J.P., Lederer W.J., Leaf A. 1997. Suppression of voltage-gated L-type Ca2+ currents by polyunsaturated fatty acids in adult and neonatal rat cardiac myocytes. Proc. Natl. Acad. Sci. USA 94:4182–4187PubMedGoogle Scholar
  57. 57.
    Xiao Y.-F., Morgan J.P., Leaf A. 2002. Effects of polyunsaturated fatty acids on cardiac voltage-activated K+ currents in adult ferret cardiomyocytes. Sheng Li Xue Bao 54:271–281PubMedGoogle Scholar
  58. 58.
    Xiao Y.-F, Wright S.N., Wang O.K., Morgan J.P., Leaf A. 1998. Fatty acids suppress voltage-gated Na+ currents in HEK293t cells transfected with the a-subunit of the human cardiac Na+ channel. Proc. Natl. Acad. Sci. USA 95:2680–2685PubMedGoogle Scholar
  59. 59.
    Xiao Y.-F, Wright S.N., Wang O.K., Morgan J.P., Leaf A. 2000. Coexpression with beta(1)-subunit modifies the kinetics and fatty acid block of hH1 (alpha) Na+ channels. Am. J. Physiol. 279:H35–H46Google Scholar
  60. 60.
    Xiao Y.-F, Ke Q., Wang S.Y., Yang Y., Wang O.K., Morgan J.P., Leaf A. 2001. Point mutations in alpha-subunit of human cardiac Na+ channels alter Na+ current kinetics. Biochem. Biophys. Res. Commun. 281:45-52CrossRefPubMedGoogle Scholar
  61. 61.
    Xiao Y.-F., Ke Q., Wang S.Y., Auktor K., Yang Y., Wang O.K., Morgan J.P., Leaf A. 2001. Single point mutations affect fatty acid block of human myocardial sodium channel alpha subunit Na+ channels. Proc. Natl. Acad. Sci. USA 98:3606–3611PubMedGoogle Scholar
  62. 62.
    Xiao, Y.-F., Ma, L., Wang, S.Y., Josephson, M.E., Wang, G.K., Morgan, J.P., Leaf, A. 2005. Potent block of inactivation-deficient Na+ channels by n-3 polyunsaturated fatty acids. Am. J. Physiol. In press. Google Scholar
  63. 63.
    Xiao Y.-F, Ke Q., Wang S.Y., Yang Y., Chen Y., Wang O.K., Morgan J.P., Cox B., Leaf A. 2004. Electrophysiologic properties of lidocaine, cocaine, and n-3 fatty-acids block of cardiac Na+ channels. Eur. J. Pharmacol. 485:31–41CrossRefPubMedGoogle Scholar
  64. 64.
    Xiao, Y.-F., Sigg, D.C. 2005. Hyperpolarization-activated cyclic-nucleotide-gated channel and cardiac biological pacemaker. Mol. Cardiol. of China 5: 513–522Google Scholar
  65. 65.
    Xiao Y.-F., Ke Q., Chen Y., Morgan J.P., Leaf A. 2004. Inhibitory effect of n-3 fish oil fatty acids on cardiac Na+/Ca2+ exchange currents in HEK293t cells. Biochem. Biophys. Res. Commun. 321:116–123CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Cardiac Rhythm ManagementMedtronic Inc.MinneapolisUSA
  2. 2.Departments of MedicineMassachusetts General Hospital, Harvard Medical SchoolBostonUSA

Personalised recommendations