Ion Channels and Cancer

  • Karl KunzelmannEmail author


Membrane ion channels are essential for cell proliferation and appear to have a role in the development of cancer. This has initially been demonstrated for potassium channels and is meanwhile also suggested for other cation channels and Cl channels. For some of these channels, like voltage-gated ether à go-go and Ca2+-dependent potassium channels as well as calcium and chloride channels, a cell cycle-dependent function has been demonstrated. Along with other membrane conductances, these channels control the membrane voltage and Ca2+ signaling in proliferating cells. Homeostatic parameters, such as the intracellular ion concentration, cytosolic pH and cell volume, are also governed by the activity of ion channels. Thus it will be an essential task for future studies to unravel cell cycle-specific effects of ion channels and non-specific homeostatic functions. When studying the role of ion channels in cancer cells, it is indispensable to choose experimental conditions that come close to the in vivo situation. Thus, environmental parameters, such as low oxygen pressure, acidosis and exposure to serum proteins, have to be taken into account. In order to achieve clinical application, more studies on the original cancer tissue are required, and improved animal models. Finally, it will be essential to generate more potent and specific inhibitors of ion channels to overcome the shortcomings of some of the current approaches.


Cancer Ion channels K+ channels Cl channels Proliferation Cell cycle Mitogens Oncogenic Apoptosis Growth 



Supported by DFG SGHR 752/2-1 und Wilhelm Sander-Stiftung 2005.063.1. The expert technical assistance by Ms. E. Tartler and Ms. A. Paech, and the contributions by Dr. R. Schreiber, M.Spitzner and J. Oursingsawat are acknowledged.


  1. 1.
    Abdel-Ghany M., Cheng H.C., Elble R.C., Pauli B.U. 2001. The breast cancer beta 4 integrin and endothelial human CLCA2 mediate lung metastasis. JBiol Chem. 276:25438–25446PubMedCrossRefGoogle Scholar
  2. 2.
    Abdul M., Hoosein N. 2002. Expression and activity of potassium ion channels in human prostate cancer. Cancer Lett. 186:99–105PubMedCrossRefGoogle Scholar
  3. 3.
    Abdul M., Hoosein N. 2002. Voltage-gated potassium ion channels in colon cancer. Oncol. Rep 9:961–964PubMedGoogle Scholar
  4. 4.
    Abdul M., Hoosein N. 2002. Voltage-gated sodium ion channels in prostate cancer: expression and activity. Anticancer Res 22:1727–1730PubMedGoogle Scholar
  5. 5.
    Amigorena S., Choquet D., Teillaud J.L., Korn H., Fridman W.H. 1990. Ion channel blockers inhibit B cell activation at a precise stage of the Gl phase of the cell cycle. Possible involvement of K+ channels. J Immunol. 144:2038–2045PubMedGoogle Scholar
  6. 6.
    Arcangeli A., Bianchi L., Becchetti A., Faravelli L., Coronnello M., Mini E., Olivotto M., Wanke E. 1995. A novel inward-rectifying K+ current with a cell-cycle dependence governs the resting potential of mammalian neuroblastoma cells. J Physiol 489:455–471PubMedGoogle Scholar
  7. 7.
    Basrai D., Kraft R., Bollensdorff C., Liebmann L., Benndorf K., Patt S. 2002. BK channel blockers inhibit potassium-induced proliferation of human astrocytoma cells. Neuroreport 13:403–407PubMedGoogle Scholar
  8. 8.
    Beeton C., Pennington M.W., Wulff H., Singh S., Nugent D., Crossley G., Khaytin I., Calabresi P.A., Chen C.Y., Gutman G.A., Chandy K.G. 2005. Targeting effector memory T cells with a selective peptide inhibitor of Kv1.3 channels for therapy of autoimmune diseases. Mol. Pharmacol. 67:1369–1381PubMedCrossRefGoogle Scholar
  9. 9.
    Berridge M.J., Bootman M.D., Lipp P. 1998. Calcium-a life and death signal. Nature 395:645–648PubMedCrossRefGoogle Scholar
  10. 10.
    Bianchi L., Wible B., Arcangeli A., Taglialatela M., Morra F., Castaldo P., Crociani O., Rosati B., Faravelli L., Olivotto M., Wanke E. 1998. herg encodes a K+ current highly conserved in tumors of different histogenesis: a selective advantage for cancer cells? Cancer Res. 58:815–822PubMedGoogle Scholar
  11. 11.
    Binggeli R. Weinstein R.C. 1986. Membrane potentials and sodium channels: hypotheses for growth regulation and cancer formation based on changes in sodium channels and gap junctions. J Theor.Biol 123:377–401PubMedGoogle Scholar
  12. 12.
    Bloch, M., Ousingsawat, J., Simon, R., Gasser, T.C., Mihatsch, M.J., Kunzelmann, K., Bubendorf, L. 2005. KCNMA1 gene amplification promotes tumor cell proliferation in prostate cancer. (Cancer res submitted)Google Scholar
  13. 13.
    Block M.L., Moody W.J. 1990. A voltage-dependent chloride current linked to the cell cycle in ascidian embryos. Science 247:1090–1092PubMedGoogle Scholar
  14. 14.
    Bortner C.D., Cidlowski J.A. 2004. The role of apoptotic volume decrease and ionic homeostasis in the activation and repression of apoptosis. Pflugers Arch 448:313–318PubMedCrossRefGoogle Scholar
  15. 15.
    Bortner C.D., Hughes F.M. Jr., Cidlowski J.A. 1997. A primary role for K+ and Na+ efflux in the activation of apoptosis. J Biol Chem 272:32436–32442PubMedCrossRefGoogle Scholar
  16. 16.
    Bross R., Hoffer L.J. 1995. Fluoxetine increases resting energy expenditure and basal body temperature inhumans. Am. J Clin. Nutr. 61:1020–1025PubMedGoogle Scholar
  17. 17.
    Bruggemann A., Stühmer W., Pardo L.A. 1997. Mitosis-promoting factor-mediated suppression of a cloned delayed rectifier potassium channel expressed in Xenopus oocytes. Proc. Natl. Acad. Sci. U.S.A 94:537–542PubMedCrossRefGoogle Scholar
  18. 18.
    Bubien J.K., Keeton D.A., Fuller C.M., Gillespie G.Y., Reddy A.T., Mapstone T.B., Benos D.J. 1999. Malignant human gliomas express an amiloride-sensitive Na+ conductance. Am. J. Physiol 276:C1405–C1410PubMedGoogle Scholar
  19. 19.
    Bubien J.K., Kirk K.L., Rado T.A., Frizzell R.A. 1990. Cell cycle dependence of chloride permeability in normal and cystic fibrosis lymphocytes. Science 248:1416–1419PubMedGoogle Scholar
  20. 20.
    Bustin S.A., Li S.R., Dorudi S. 2001. Expression of the Ca2+-activated chloride channel genes CLCA1 and CLCA2 is downregulated in human colorectal cancer. DNA Cell Biol 20:331–338PubMedCrossRefGoogle Scholar
  21. 21.
    Camacho J., Sanchez A., Stiihmer W., Pardo L.A. 2000. Cytoskeletal interactions determine the electrophysiological properties of human BAG potassium channels. Pflugers Arch. 441:167–174PubMedCrossRefGoogle Scholar
  22. 22.
    Chang K.W., Yuan T.C., Fang K.P., Yang F.S., Liu C.J., Chang C.S., Lin S.C. 2003. The increase of voltage-gated potassium channel Kv3.4 mRNA expression in oral squamous cell carcinoma. J Oral Pathol. Med 32:606–611PubMedCrossRefGoogle Scholar
  23. 23.
    Chou C.Y., Shen M.R., Wu S.N. 1995. Volume-sensitive chloride channels associated with human cervical carcinogenesis. Cancer Res. 55:6077–6083PubMedGoogle Scholar
  24. 24.
    Conti M. 2004. Targeting K+ channels for cancer therapy. J Exp Ther. Oncol. 4:161–166PubMedGoogle Scholar
  25. 25.
    Cunningham S.A., Awayda M.S., Bubien J.K., Ismailov I.I., Arrate M.P., Berdiev B.K., Benos D.J., Fuller C.M. 1995. Cloning of an epithelial chloride channel from bovine trachea. J. Biol. Chem. 270:31016–31026PubMedGoogle Scholar
  26. 26.
    Czarnecki A., L. Dufy-Barbe, Huet S., Odessa M.F., Bresson-Bepoldin L. 2003. Potassium channel expression level is dependent on the proliferation state in the GH3 pituitary cell line. Am. J. Physiol Cell Physiol 284:C1054–C1064PubMedGoogle Scholar
  27. 27.
    Day M.L., Johnson M.H., Cook D.I. 1998. Cell cycle regulation of a T-type calcium current in early mouse embryos. Pflugers Arch 436:834–842PubMedCrossRefGoogle Scholar
  28. 28.
    Day M.L., Pickering S.J., Johnson M.H., Cook D.I. 1993. Cell-cycle control of a large-conductance K+ channel in mouse early embryos. Nature 365:560–562PubMedCrossRefGoogle Scholar
  29. 29.
    Day M.L., Winston N., J.L. McConnell, Cook D.I., Johnson M.H. 2001. tiK+ toK+: an embryonic clock? Reprod. Fertil. Dev. 2001. 13(1):69–79Google Scholar
  30. 30.
    Dubois J.M., Rouzaire-Dubois B. 2004. The influence of cell volume changes on tumour cell proliferation. Eur. Biophys J 33:227–232PubMedCrossRefGoogle Scholar
  31. 31.
    El Kholy W., Macdonald P.E., Lin J.H., Wang J., Fox J.M., Light P.E., Wang Q., Tsushima R.G., Wheeler M.B. 2003. The phosphatidylinositol 3-kinase inhibitor LY294002 potently blocks K(V) currents via a direct mechanism. FASEB J 17:720–722PubMedGoogle Scholar
  32. 32.
    Elble R.C., Pauli B.U. 2001. Tumor suppression by a proapoptotic calcium-activated chloride channel in mammary epithelium. J Biol Chem 276:40510–40517PubMedCrossRefGoogle Scholar
  33. 33.
    Ellis R.J. 2001. Macromolecular crowding: obvious but underappreciated. Trends Biochem Sci. 26:597–604PubMedCrossRefGoogle Scholar
  34. 34.
    Elso C.M., Lu X., Culiat C.T., Rutledge J.C., Cacheiro N.L., Generoso W.M., Stubbs L.J. 2004. Heightened susceptibility to chronic gastritis, hyperplasia and metaplasia in Kcnq1 mutant mice. Hum. Mol. Genet. 13:2813–2821PubMedCrossRefGoogle Scholar
  35. 35.
    Farias L.M., Ocana D.B., Diaz L., Larrea F., Avila-Chavez E., Cadena A., Hinojosa L.M., Lara G., Villanueva L.A., Vargas C., Hernandez-Gallegos E., Camacho-Arroyo I., Duenas-Gonzalez A., Perez-Cardenas E., Pardo L.A., Morales A., Taja-Chayeb L., Escamilla J., Sanchez-Pena C., Camacho J. 2004. Ether a go-go potassium channels as human cervical cancer markers. Cancer Res. 64:6996–7001PubMedCrossRefGoogle Scholar
  36. 36.
    Fraser S.P., Diss J.K., Chioni A.M., Mycielska M.E., Pan H., Yamaci R.F., Pani F., Siwy Z., Krasowska M., Grzywna Z., Brackenbury W.J., Theodorou D., Koyuturk M., Kaya H., Battaloglu E., De Bella M.T., Slade M.J., Tolhurst R., Palmieri C., Jiang J., Latchman D.S., Coombes R.C., Djamgoz M.B. 2005. Voltage-gated sodium channel expression and potentiation of human breast cancer metastasis. Clin. Cancer Res 11:5381–5389PubMedGoogle Scholar
  37. 37.
    Fraser S.P., Diss J.K., Lloyd L.J., Pani F., Chioni A.M., George A.J., Djamgoz M.B. 2004. T-lymphocyte invasiveness: control by voltage-gated Na+ channel activity. FEES Lett. 569:191–194PubMedCrossRefGoogle Scholar
  38. 38.
    Fraser S.P., Salvador V., Manning E.A., Mizal J., Altun S., Raza M., Berridge R.J., Djamgoz M.B. 2003. Contribution of functional voltage-gated Na+ channel expression to cell behaviors involved in the metastatic cascade in rat prostate cancer: I. Lateral motility. J Cell Physiol 195:479–487PubMedCrossRefGoogle Scholar
  39. 39.
    Gamper N., Fillon S., Huber S.M., Feng Y., Kobayashi T., Cohen P., Lang F. 2002. IGF-1 up-regulates K+ channels via PI3-kinase, PDK1 and SGK1. Pflugers Arch 443:625–634PubMedGoogle Scholar
  40. 40.
    Gerard V., Rouzaire-Dubois B., Dilda P., Dubois J.M. 1998. Alterations of ionic membrane permeabilities in multidrug-resistant neuroblastoma × glioma hybrid cells. J Exp Biol 201:21–31PubMedGoogle Scholar
  41. 41.
    Ghiani C.A., Yuan X., Eisen A.M., Knutson P.L., DePinho R.A., McBain C.J., Gallo V. 1999. Voltage-activated K+ channels and membrane depolarization regulate accumulation of the cyclin-dependent kinase inhibitors p27(Kip1) andp21(CIP1) in glial progenitor cells. J Neurosci. 19:5380–5392PubMedGoogle Scholar
  42. 42.
    Gottlieb R.A., Dosanjh A. 1996. Mutant cystic fibrosis transmembrane conductance regulator inhibits acidification and apoptosis in C127 cells: possible relevance to cystic fibrosis. Proc. Natl. Acad. Sci. U.S.A. 93:3587–3591PubMedGoogle Scholar
  43. 43.
    Gray L.S., Perez-Reyes E., Gomora J.C., Haverstick D.M., Shattock M., McLatchie L., Harper J., Brooks G., Heady T., Macdonald T.L. 2004. The role of voltage gated T-type Ca2+ channel isoforms in mediating “capacitative” Ca2+ entry in cancer cells. Cell Calcium 36:489–497PubMedCrossRefGoogle Scholar
  44. 44.
    Grgic I., eichler I., Heinau P., Si H., Brakemeier S., Hoyer J., Kohler R. 2005. Selective blockade of the intermediate-conductance Ca2+-activated K+ channel suppresses proliferation of microvascular and macrovascular endothelial cells and angiogenesis in vivo. Arterioscler. Thromb. Vasc. Biol 25:704–709PubMedGoogle Scholar
  45. 45.
    Grimes J.A., Fraser S.P., Stephens G.J., Downing J.E., Laniado M.E., Foster C.S., Abel P.D., Djamgoz M.B. 1995. Differential expression of voltage-activated Na+ currents in two prostatic rumour cell lines: contribution to invasiveness in vitro. FEES Lett. 369:290–294PubMedCrossRefGoogle Scholar
  46. 46.
    Gulbins E., Jekle A., Ferlinz K., Grassme H., Lang F. 2000. Physiology of apoptosis. Am. J Physiol Renal Physiol 279:F605–F615PubMedGoogle Scholar
  47. 47.
    Quo T.B., Lu J., Li T., Lu Z., Xu G., Xu M., Lu L., Dai W. 2005. Insulin-activated, K+-channel-sensitive Akt pathway is primary mediator of ML-1 cell proliferation. Am. J Physiol Cell Physiol 289:C257–C263Google Scholar
  48. 48.
    Henke G., Maier G., Wallisch S., Boehmer C., Lang F. 2004. Regulation of the voltage gated K+ channel Kv1.3 by the ubiquitin ligase Nedd4-2 and the serum and glucocorticoid inducible kinase SGK1. J Cell Physiol 199:194–199PubMedCrossRefGoogle Scholar
  49. 49.
    Huang Y., Rane S.G. 1994. Potassium channel induction by the Ras/Raf signal transduction cascade. J Biol Chem. 269:31183–31189PubMedGoogle Scholar
  50. 50.
    Hughes F.M. Jr., Bortner C.D., Purdy G.D., Cidlowski J.A. 1997. Intracellular K+ suppresses the activation of apoptosis in lymphocytes. J Biol Chem 272:30567–30576PubMedGoogle Scholar
  51. 51.
    Hughes F.M. Jr., Cidlowski J.A. 1999. Potassium is a critical regulator of apoptotic enzymes in vitro and in vivo. Adv Enzyme Regul. 39:157–171PubMedGoogle Scholar
  52. 52.
    Izumi H., Torigoe T., Ishiguchi H., Uramoto H., Yoshida Y., Tanabe M., Ise T., Murakami T., Yoshida T., Nomoto M., Kohno K. 2003. Cellular pH regulators: potentially promising molecular targets for cancer chemotherapy. Cancer Treat. Rev. 29:541–549PubMedCrossRefGoogle Scholar
  53. 53.
    Jager H., Dreker T., Buck A., Giehl K., Gress T., Grissmer S. 2004. Blockage of intermediate-conductance Ca2+-activated K+ channels inhibit human pancreatic cancer cell growth in vitro. Mol. Pharmacol. 65:630–638PubMedCrossRefGoogle Scholar
  54. 54.
    Jensen B.S., Strobaek D., Olesen S.P., Christophersen P. 2001, The Ca2+-activated K+ channel of intermediate conductance: a molecular target for novel treatments? Curr. Drug Targets. 2:401–422PubMedCrossRefGoogle Scholar
  55. 55.
    Jiang B., Hattori N., Liu B., Nakayama Y., Kitagawa K., Sumita K., Inagaki C. 2004. Expression and roles of Cl channel C1C-5 in cell cycles of myeloid cells. Biochem Biophys Res Commun. 317:192–197PubMedCrossRefGoogle Scholar
  56. 56.
    Jirsch J., Deeley R.G., Cole S.P., Stewart A.J., Fedida D. 1993. Inwardly rectifying K+ channels and volume-regulated anion channels in multidrug-resistant small cell lung cancer cells. Cancer Res 53:4156–4160PubMedGoogle Scholar
  57. 57.
    Johnson M.H., Day M.L. 2000. Egg timers: how is developmental time measured in the early vertebrate embryo? BioEssays 22:57–63PubMedCrossRefGoogle Scholar
  58. 58.
    Kelly P.A., Finidori J., Moulin S., Kedzia C., Binart N. 2001. Growth hormone receptor signalling and actions in bone growth. Horm. Res 55 Suppl 2:14–17PubMedGoogle Scholar
  59. 59.
    Khanna R., Chang M.C., Joiner W.J., Kaczmarek L.K., Schlichter L.C. 1999. hSK4/hIKl, a calmodulin-binding KCa channel in human T lymphocytes. Roles in proliferation and volume regulation. J Biol Chem 274:14838–14849PubMedCrossRefGoogle Scholar
  60. 60.
    Kim C.J., Cho Y.G., Jeong S.W., Kim Y.S., Kim S.Y., Nam S.W., Lee S.H., Yoo N.J., Lee J.Y., Park W.S. 2004. Altered expression of KCNK9 in colorectal cancers. APMIS 112:588–594PubMedCrossRefGoogle Scholar
  61. 61.
    Kim J.A., Kang Y.S., Lee Y.S. 2003. Role of Ca2+-activated Cl− channels in the mechanism of apoptosis induced by cyclosporin A in a human hepatoma cell line. Biochem Biophys Res. Commun. 309:291–297PubMedGoogle Scholar
  62. 62.
    Kirk K., Ellory J.C., Young J.D. 1992. Transport of organic substrates via a volume-activated channel. J Biol Chem 267:23475–23478PubMedGoogle Scholar
  63. 63.
    Klimatcheva E., Wonderlin W.F. 1999. An ATP-sensitive K(+) current that regulates progression through early G1 phase of the cell cycle in MCF-7 human breast cancer cells. J Membr. Biol 171:35–46PubMedCrossRefGoogle Scholar
  64. 64.
    Klimatcheva E., Wonderlin W.F. 1999. An ATP-sensitive K(+) current that regulates progression through early Gl phase of the cell cycle in MCF-7 human breast cancer cells. J Membr. Biol 171:35–46PubMedCrossRefGoogle Scholar
  65. 65.
    Kuga T., Kobayashi S., Hirakawa Y., Kanaide H., Takeshita A. 1996. Cell cycle–dependent expression of L- and T-type Ca2+ currents in rat aortic smooth muscle cells in primary culture. Circ. Res 79:14–19PubMedGoogle Scholar
  66. 66.
    Kuhlmann C.R., Schafer M., Li F., Sawamura T., Tillmanns H., Waldecker B., Wiecha J. 2003. Modulation of endothelial Ca(2+)-activated K(+) channels by oxidized LDL and its contribution to endothelial proliferation. Cardiovasc. Res 60:626–634PubMedCrossRefGoogle Scholar
  67. 67.
    Kuhlmann C.R., Wu Y., Li F., Munz B.M., Tillmanns H., Waldecker B., Wiecha J. 2004. bFGF activates endothelial Ca2+-activated K+ channels involving G-proteins and tyrosine kinases. Vascul. Pharmacol. 41:181–186PubMedCrossRefGoogle Scholar
  68. 68.
    Lang F., Friedrich F., Kahn E., Woll E., Hammerer M., Waldegger S., Maly K., Grunicke H. 1991. Bradykinin-induced oscillations of cell membrane potential in cells expressing the Ha-ras oncogene. J Biol Chem 266:4938–4942PubMedGoogle Scholar
  69. 69.
    Lang F., Gulbins E., Szabo I., Lepple-Wienhues A., Huber S.M., Duranton C., Lang K.S., Lang P.A., Wieder T. 2004. Cell volume and the regulation of apoptotic cell death. J Mol. Recognit. 17:473–480PubMedCrossRefGoogle Scholar
  70. 70.
    Lang F, Henke G., Embark H.M., Waldegger S., Palmada M., Bohmer C., Vallon V. 2003. Regulation of channels by the serum and glucocorticoid-inducible kinase - implications for transport, excitability and cell proliferation. Cell Physiol Biochem 13:41–50PubMedGoogle Scholar
  71. 71.
    Lastraioli E., Guasti L., Crociani O., Polvani S., Hofmann G., Witchel H., Bencini L., Calistri M., Messerini L., Scatizzi M., Moretti R., Wanke E., Olivotto M., Mugnai G., Arcangeli A. 2004. herg1 gene and HERG1 protein are overexpressed in colorectal cancers and regulate cell invasion of tumor cells. Cancer Res. 64:606–611PubMedCrossRefGoogle Scholar
  72. 72.
    Lepple-Wienhues A., Berweck S., Bohmig M., Leo C.P., Meyling B., Garbe C., Wiederholt M. 1996. K+ channels and the intracellular calcium signal in human melanoma cell proliferation. J Membr. Biol 151:149–157PubMedCrossRefGoogle Scholar
  73. 73.
    Lepple-Wienhues A., Wieland U., Laun T., Heil L., Stern M., Lang F. 2001. A src-like kinase activates outwardly rectifying chloride channels in CFTR-defective lymphocytes. FASEB J 15:927–931PubMedCrossRefGoogle Scholar
  74. 74.
    Loewen M.E., Forsyth G.W. 2005. Structure and function of CLCA proteins. Physiol Rev. 85:1061–1092PubMedCrossRefGoogle Scholar
  75. 75.
    Lovisolo D., Munaron L., Baccino F.M., Bonelli G. 1992. Potassium and calcium currents activated by foetal calf serum in Balb-c 3T3 fibroblasts. Biochim. Biophys Acta 1112:241–245PubMedGoogle Scholar
  76. 76.
    Lu L., Yang T., Markakis D., Guggino W.B., Craig R.W. 1993. Alterations in a voltage-gated K+ current during the differentiation of ML-1 human myeloblastic leukemia cells. J Membr. Biol 132:267–274PubMedGoogle Scholar
  77. 77.
    Malhi H., Irani A.N., Rajvanshi P., Suadicani S.O., Spray D.C., McDonald T.V., Gupta S. 2000. KATP channels regulate mitogenically induced proliferation in primary rat hepatocytes and human liver cell lines. Implications for liver growth control and potential therapeutic targeting. J Biol Chem 275:26050–26057PubMedCrossRefGoogle Scholar
  78. 78.
    Manolopoulos V.G., Liekens S., Koolwijk P., Voets T., Peters E., Droogmans G., Lelkes P.I., De Clercq E., Nilius B. 2000. Inhibition of angiogenesis by blockers of volume-regulated anion channels. Gen. Pharmacol. 34:107–116PubMedCrossRefGoogle Scholar
  79. 79.
    Mendoza S.A. 1988. The role of ion transport in the regulation of cell proliferation. Pediatr. Nephrol. 2:118–123PubMedGoogle Scholar
  80. 80.
    Morrill G. A., Robbins E. 1984. Changes in intracellular cations during the cell cycle in HeLa cells. Physiol Chem Phys. Med NMR 16:209–219PubMedGoogle Scholar
  81. 81.
    Mu D., Chen L., Zhang X., See L.H., Koch C.M., Yen C., Tong J.J., Spiegel L., Nguyen K.C., Servoss A., Peng Y., Pei L., Marks J.R., Lowe S., Hoey T., Jan L.Y., McCombie W.R., Wigler M.H., Powers S. 2003. Genomic amplification and oncogenic properties of the KCNK9 potassium channel gene. Cancer Cell 3:297–302PubMedCrossRefGoogle Scholar
  82. 82.
    Mu D., Chen L., Zhang X., See L.H., Koch C.M., Yen C., Tong J.J., Spiegel L., Nguyen K.C., Servoss A., Peng Y., Pei L., Marks J.R., Lowe S., Hoey T., Jan L.Y., McCombie W.R., Wigler M.H., Powers S. 2003. Genomic amplification and oncogenic properties of the KCNK9 potassium channel gene. Cancer Cell 3:297–302PubMedCrossRefGoogle Scholar
  83. 83.
    Munaron L., Antoniotti S., Pla A.F., Lovisolo D. 2004. Blocking Ca2+ entry: a way to control cell proliferation. Curr. Med. Chem 11:1533–1543PubMedGoogle Scholar
  84. 84.
    Neylon C.B. 2002. Potassium channels and vascular proliferation. Vascul. Pharmacol. 38:35–41PubMedCrossRefGoogle Scholar
  85. 85.
    Nilius B., Schwarz G., Droogmans G. 1993. Control of intracellular calcium by membrane potential in human melanoma cells. Am. J Physiol 265:C1501–C1510PubMedGoogle Scholar
  86. 86.
    Nilius B., Wohlrab W. 1992. Potassium channels and regulation of proliferation of human melanoma cells. J Physiol (Land.) 445:537–548Google Scholar
  87. 87.
    O’Grady S.M., Lee S.Y. 2005. Molecular diversity and function of voltage-gated (Kv) potassium channels in epithelial cells. Int. J Biochem Cell Biol 37:1578–1594PubMedGoogle Scholar
  88. 88.
    Okada Y., Maeno E., Shimizu T., Dezaki K., Wang J., Morishima S. 2001. Receptor-mediated control of regulatory volume decrease (RVD) and apoptotic volume decrease (AVD). J Physiol. 532:3–16PubMedCrossRefGoogle Scholar
  89. 89.
    Okada Y., Maeno E., Shimizu T., Manabe K., Mori S., Nabekura T. 2004. Dual roles of plasmalemmal chloride channels in induction of cell death. Pflugers Arch 448:287–295PubMedCrossRefGoogle Scholar
  90. 90.
    Ouadid-Ahidouch H., Roudbaraki M., Ahidouch A., Delcourt P., Prevarskaya N. 2004. Cell-cycle-dependent expression of the large Ca2+-activated K+ channels in breast cancer cells. Biochem Biophys. Res. Commun. 316:244–251PubMedCrossRefGoogle Scholar
  91. 91.
    Ouadid-Ahidouch H., Roudbaraki M., Delcourt P., Ahidouch A., Joury N., Prevarskaya N. 2004. Functional and molecular identification of intermediate-conductance Ca(2+)-activated K(+) channels in breast cancer cells: association with cell cycle progression. Am. J Physiol Cell Physiol 287:C125–C134PubMedCrossRefGoogle Scholar
  92. 92.
    Pandiella A., Magni M., Lovisolo D., Meldolesi J. 1989. The effect of epidermal growth factor on membrane potential. Rapid hyperpolarization followed by persistent fluctuations. J Biol Chem 264:12914–12921PubMedGoogle Scholar
  93. 93.
    Pappas C.A., Ullrich N., Sontheimer H. 1994. Reduction of glial proliferation by K+ channel blockers is mediated by changes in pHi. Neuroreport 6:193–196PubMedGoogle Scholar
  94. 94.
    Pardo L.A. 2004. Voltage-gated potassium channels in cell proliferation. Physiology (Bethesda.) 19:285–292Google Scholar
  95. 95.
    Pardo L.A., del Camino D., Sanchez A., Alves F., Briiggemann A., Beckh S., Stuhmer W. 1999. Oncogenic potential of EAG K+ channels. EMBO J 18:5540–5547PubMedCrossRefGoogle Scholar
  96. 96.
    Parihar A.S., Coghlan M.J., Gopalakrishnan M., Shieh C.C. 2003. Effects of intermediate-conductance Ca(2+)-activated K(+) channel modulators on human prostate cancer cell proliferation. Eur. J Pharmacol. 471:157–164PubMedCrossRefGoogle Scholar
  97. 97.
    Patel A.J., Lazdunski M. 2004. The 2P-domain K(+) channels: role in apoptosis and tumorigenesis. Pflugers Arch 448:261–273PubMedCrossRefGoogle Scholar
  98. 98.
    Part S., Preussat K., Beetz C., Kraft R., Schrey M., Kalff R., Schonherr K., Heinemann S.H. 2004. Expression of ether a go-go potassium channels in human gliomas. Neurosci. Lett. 368:249–253PubMedCrossRefGoogle Scholar
  99. 99.
    Pei L., Wiser O., Slavin A., Mu D., Powers S., Jan L.Y., Hoey T. 2003. Oncogenic potential of TASK3 (Kcnk9) depends on K+ channel function. Proc. Natl. Acad. Sci. U.S.A 100:7803–7807PubMedGoogle Scholar
  100. 100.
    Peres A., Zippel R., Sturani E. 1988. Serum induces the immediate opening of Ca2+-activated channels in quiescent human fibroblasts. FEES Lett. 241:164–168PubMedCrossRefGoogle Scholar
  101. 101.
    Piros E.T., Shen L., Huang X.Y. 1999. Purification of an EH domain-binding protein from rat brain that modulates the gating of the rat ether-a-go-go channel. J Biol Chem 274:33677–33683PubMedCrossRefGoogle Scholar
  102. 102.
    Platoshyn O., Golovina V.A., Bailey C.L., Limsuwan A., Krick S., Juhaszova M., Seiden J.E., Rubin L.J., Yuan J.X. 2000. Sustained membrane depolarization and pulmonary artery smooth muscle cell proliferation. Am. J Physiol Cell Physiol 279:C1540–C1549PubMedGoogle Scholar
  103. 103.
    Rao J.N., Platoshyn O., Li L., Guo X., Golovina V.A., Yuan J.X., Wang J.Y. 2002. Activation of K(+) channels and increased migration of differentiated intestinal epithelial cells after wounding. Am. J Physiol Cell Physiol 282:C885–C898PubMedGoogle Scholar
  104. 104.
    Remillard C. V., Yuan J.X. 2004. Activation of K+ channels: an essential pathway in programmed cell death. Am. J Physiol Lung Cell Mol. Physiol 286:L49–L67PubMedGoogle Scholar
  105. 105.
    Repp H., Draheim H., Ruland J., Seidel G., Beise J., Presek P., Dreyer F. 1993. Profound differences in potassium current properties of normal and Rous sarcoma virus-transformed chicken embryo fibroblasts. Proc. Natl. Acad. Sci. U.S.A 90:3403–3407PubMedGoogle Scholar
  106. 106.
    Reshkin S.J., Bellizzi A., Caldeira S., Albarani V., Malanchi I., Poignee M., Alunni-Fabbroni M., Casavola V., Tommasino M. 2000. Na+/H+ exchanger-dependent intracellular alkalinization is an early event in malignant transformation and plays an essential role in the development of subsequent transformation-associated phenotypes. FASEB J 14:2185–2197PubMedCrossRefGoogle Scholar
  107. 107.
    Roderick C., Reinach P.S., Wang L., Lu L. 2003. Modulation of rabbit corneal epithelial cell proliferation by growth factor-regulated K(+) channel activity. J Membr. Biol 196:41–50PubMedCrossRefGoogle Scholar
  108. 108.
    Roger S., Potier M., Vandier C., Le Guennec J.Y., Besson P. 2004. Description and role in proliferation of iberiotoxin-sensitive currents in different human mammary epithelial normal and cancerous cells. Biochim. Biophys Acta 1667:190–199PubMedGoogle Scholar
  109. 109.
    Roger S., Potier M., Vandier C., Le Guennec J.Y., Besson P. 2004. Description and role in proliferation of iberiotoxin-sensitive currents in different human mammary epithelial normal and cancerous cells. Biochim. Biophys. Acta 1667:190–199PubMedGoogle Scholar
  110. 110.
    Rouzaire-Dubois B., Dubois J.M. 1998. K+ channel block-induced mammalian neuroblastoma cell swelling: a possible mechanism to influence proliferation. J Physiol (Land.) 510:93–102Google Scholar
  111. 111.
    Rutili G., Arfors K.E. 1977. Protein concentration in interstitial and lymphatic fluids from the subcutaneous tissue. Acta Physiol Scand. 99:1–8PubMedCrossRefGoogle Scholar
  112. 112.
    Schlichter L.C., Sakellaropoulos G., Ballyk B., Pennefather P.S., Phipps D.J. 1996. Properties of K+ and Cl− channels and their involvement in proliferation of rat microglial cells. Glia 17:225–236PubMedCrossRefGoogle Scholar
  113. 113.
    Schwab A. 2001. Ion channels and transporters on the move. News Physiol Sci. 2001. Feb.; 16:29–33Google Scholar
  114. 114.
    Schwab, A., Wulf, A., Schulz, C., Kessler, W., Nechyporuk-Zloy, V., Romer, M., Reinhardt, J., Weinhold, D., Dieterich, P., Stock, C., Hebert, S.C. 2005. Subcellular distribution of calcium-sensitive potassium channels (IK1) in migrating cells. J Cell Physiol.:Google Scholar
  115. 115.
    Shen M.R., Droogmans G., Eggermont J., Voets T., Ellory J.C., Nilius B. 2000. Differential expression of volume-regulated anion channels during cell cycle progression of human cervical cancer cells. J Physiol 529(Pt 2):385–394PubMedGoogle Scholar
  116. 116.
    Shen M.R., Yang T.P., Tang M.J. 2002. A novel function of BCL-2 overexpression in regulatory volume decrease. Enhancing swelling-activated Ca(2+) entry and Cl(−) channel activity. J Biol Chem 277:15592–15599PubMedGoogle Scholar
  117. 117.
    Shuba Y.M., Prevarskaya N., Lemonnier L., Van Coppenolle F., Kostyuk P.G., Mauroy B., Skryma R. 2000. Volume-regulated chloride conductance in the LNCaP human prostate cancer cell line. Am J Physiol Cell Physiol 279:C1144–C1154PubMedGoogle Scholar
  118. 118.
    Sobko A., Peretz A., Attali B. 1998. Constitutive activation of delayed-rectifier potassium channels by a src family tyrosine kinase in Schwann cells. EMBO J 17:4723–4734PubMedCrossRefGoogle Scholar
  119. 119.
    Soroceanu L., Manning T.J. Jr., Sontheimer H. 1999. Modulation of glioma cell migration and invasion using Cl(−) and K(+) ion channel blockers. J Neurosci. 19:5942–5954PubMedGoogle Scholar
  120. 120.
    Spitzner, M., Ousingsawat, J., Scheldt, K., Kunzelmann, K., Schreiber, R. 2005. Role of voltage gated K+ channels for proliferation of colonic cancer cells. Cancer Res. (submitted)Google Scholar
  121. 121.
    Suzuki T., Takimoto K. 2004. Selective expression of HERG and Kv2 channels influences proliferation of uterine cancer cells. Int. J Oncol. 25:153–159PubMedGoogle Scholar
  122. 122.
    Szabo L, Bock J., Jekle A., Soddemann M., Adams C., Lang F., Zoratti M., Gulbins E. 2005. A novel potassium channel in lymphocyte mitochondria. J Biol Chem 280:12790–12798PubMedGoogle Scholar
  123. 123.
    Szabo I., Lepple-Wienhues A., Kaba K.N., Zoratti M., Gulbins E., Lang F. 1998. Tyrosine kinase-dependent activation of a chloride channel in CD95-induced apoptosis in T lymphocytes. Proc. Natl. Acad. Sci. U.S.A 95:6169–6174PubMedGoogle Scholar
  124. 124.
    Takagi K., Okabe Y., Yoshimura K., Ichikawa Y. 1986. Changes in intracellular K+ and Na+ ion concentrations during cell growth and differentiation. Cell Struct. Funct. 11:235–243PubMedCrossRefGoogle Scholar
  125. 125.
    Teulon J., Ronco P.M., Geniteau-Legendre M., Baudouin B., Estrade S., Cassingena R., Vandewalle A. 1992. Transformation of renal tubule epithelial cells by simian virus-40 is associated with emergence of Ca(2+)-insensitive K+ channels and altered mitogenic sensitivity to K+ channel blockers. J Cell Physiol 151:113–125PubMedCrossRefGoogle Scholar
  126. 126.
    Ullrich N., Sontheimer H. 1997. Cell cycle-dependent expression of a glioma-specific chloride current: proposed link to cytoskeletal changes. Am J Physiol 273:C1290–C1297PubMedGoogle Scholar
  127. 127.
    Van Coppenolle F., Skryma R., Ouadid-Ahidouch H., Slomianny C., Roudbaraki M., Delcourt P., Dewailly E., Humez S., Crepin A., Gourdou I., Djiane J., Bonnal J.L., Mauroy B., Prevarskaya N. 2004. Prolactin stimulates cell proliferation through a long form of prolactin receptor and K+ channel activation. Biochem J 377:569–578PubMedGoogle Scholar
  128. 128.
    Villaz M., Cinniger J.C., Moody W.J. 1995. A voltage-gated chloride channel in ascidian embryos modulated by both the cell cycle clock and cell volume. J Physiol 488:689–699PubMedGoogle Scholar
  129. 129.
    Voets T., Szucs G., Droogmans G., Nilius B. 1995. Blockers of volume-activated Cl− currents inhibit endothelial cell proliferation. Pflugers Arch 431:132–134PubMedCrossRefGoogle Scholar
  130. 130.
    Voets T., Wei L., De Smet P., Van Driessche W., Eggermont J., Droogmans G., Nilius B. 1997. Downregulation of volume-activated Cl− currents during muscle differentiation. Am. J Physiol 272:C667–C674PubMedGoogle Scholar
  131. 131.
    Wakabayashi S., Shigekawa M., Pouyssegur J. 1997. Molecular physiology of vertebrate Na+/H+ exchangers. Physiological Reviews 77:51–74PubMedGoogle Scholar
  132. 132.
    Wang G.L., Wang X.R., Lin M.J., He H., Lan X.J., Guan Y.Y. 2002. Deficiency in C1C-3 chloride channels prevents rat aortic smooth muscle cell proliferation. Circ. Res 91:E28–E32PubMedCrossRefGoogle Scholar
  133. 133.
    Wang H., Zhang Y., Cao L., Han H., Wang J., Yang B., Nattel S., Wang Z. 2002. HERG K+ channel, a regulator of tumor cell apoptosis and proliferation. Cancer Res. 62:4843–4848PubMedGoogle Scholar
  134. 134.
    Wang J., Zhang Y., Wang H., Han H., Nattel S., Yang B., Wang Z. 2004. Potential mechanisms for the enhancement of HERG K+ channel function by phospholipid metabolites. Br. J Pharmacol. 141:586–599PubMedCrossRefGoogle Scholar
  135. 135.
    Wang L., Zhou P., Craig R.W., Lu L. 1999. Protection from cell death by mcl-1 is mediated by membrane hyperpolarization induced by K(+) channel activation. J Membr. Biol 172:113–120PubMedCrossRefGoogle Scholar
  136. 136.
    Wang X.T., Nagaba Y., Cross H.S., Wrba F., Zhang L., Guggino S.E. 2000. The mRNA of L-type calcium channel elevated in colon cancer: protein distribution in normal and cancerous colon. Am. J Pathol 157:1549–1562PubMedGoogle Scholar
  137. 137.
    Wang Z. 2004. Roles of K(+) channels in regulating tumour cell proliferation and apoptosis. Pflugers Arch 448:274–286PubMedCrossRefGoogle Scholar
  138. 138.
    Wei L., Xiao A.Y., Jin C., Yang A., Lu Z.Y., Yu S.P. 2004. Effects of chloride and potassium channel blockers on apoptotic cell shrinkage and apoptosis in cortical neurons. Pflugers Arch 448:325–334PubMedCrossRefGoogle Scholar
  139. 139.
    Winston N.J., Johnson M.H., McConnell J.M., Cook D.I., Day M.L. 2004. Expression and role of the ether-a-go-go-related (MERG1A) potassium-channel protein during preimplantation mouse development. Biol Reprod. 70:1070–1079PubMedGoogle Scholar
  140. 140.
    Wissenbach U., Niemeyer B., Himmerkus N., Fixemer T., Bonkhoff H., Flockerzi V. 2004. TRPV6 and prostate cancer: cancer growth beyond the prostate correlates with increased TRPV6 Ca2+ channel expression. Biochem Biophys. Res. Commun. 322:1359–1363PubMedCrossRefGoogle Scholar
  141. 141.
    Wolfram Kuhlmann C.R., Wiebke L.D., Schaefer C.A., Kerstin M.A., Backenkohler U., Neumann T., Tillmanns H., Erdogan A. 2004. Lysophosphatidylcholine-induced modulation of Ca(2+)-activated K(+)channels contributes to ROS-dependent proliferation of cultured human endothelial cells. J Mol. Cell Cardiol. 36:675–682PubMedGoogle Scholar
  142. 142.
    Wondergem R., Gong W., Monen S.H., Dooley S.N., Gonce J.L., Conner T.D., Houser M., Ecay T.W., Ferslew K.E. 2001. Blocking swelling-activated chloride current inhibits mouse liver cell proliferation. J Physiol 532:661–672PubMedCrossRefGoogle Scholar
  143. 143.
    Wonderlin W.F., Strobl J.S. 1996. Potassium channels, proliferation and G1 progression. J Membr. Biol 154:91–107PubMedCrossRefGoogle Scholar
  144. 144.
    Wonderlin W.F., Woodfork K.A., Strobl J.S. 1995. Changes in membrane potential during the progression of MCF-7 human mammary tumor cells through the cell cycle. J Cell Physiol 165:177–185PubMedCrossRefGoogle Scholar
  145. 145.
    Yao X., Kwan H.Y. 1999. Activity of voltage-gated K+ channels is associated with cell proliferation and Ca2+ influx in carcinoma cells of colon cancer. Life Sci. 65:55–62PubMedCrossRefGoogle Scholar
  146. 146.
    Yu S.P., Choi D.W. 2000. Ions, cell volume, and apoptosis. Proc. Natl. Acad. Sci. U.S.A 97:9360–9362PubMedGoogle Scholar
  147. 147.
    Yu S.P., Yeh C.H., Sensi S.L., Gwag B.J., Canzoniero L.M., Farhangrazi Z.S., Ying H.S., Tian M., Dugan L.L., Choi D.W. 1997. Mediation of neuronal apoptosis by enhancement of outward potassium current. Science 278:114–117PubMedCrossRefGoogle Scholar
  148. 148.
    Yu S.P., Yeh C.H., Sensi S.L., Gwag B.J., Canzoniero L.M., Farhangrazi Z.S., Ying H.S., Tian M., Dugan L.L., Choi D.W. 1997. Mediation of neuronal apoptosis by enhancement of outward potassium current. Science 278:114–117PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Institut für PhysiologieUniversität RegensburgGermany

Personalised recommendations