Advertisement

The Journal of Membrane Biology

, Volume 205, Issue 3, pp 147–157 | Cite as

Ion Channels in Cell Proliferation and Apoptotic Cell Death

  • F. Lang
  • M. Föller
  • K.S. Lang
  • P.A. Lang
  • M. Ritter
  • E. Gulbins
  • A. Vereninov
  • S.M. Huber
Article

Abstract

Cell proliferation and apoptosis are paralleled by altered regulation of ion channels that play an active part in the signaling of those fundamental cellular mechanisms. Cell proliferation must - at some time point - increase cell volume and apoptosis is typically paralleled by cell shrinkage. Cell volume changes require the participation of ion transport across the cell membrane, including appropriate activity of Cl and K+ channels. Besides regulating cytosolic Cl activity, osmolyte flux and, thus, cell volume, most Cl channels allow HCO3 exit and cytosolic acidification, which inhibits cell proliferation and favors apoptosis. K+ exit through K+ channels may decrease intracellular K+ concentration, which in turn favors apoptotic cell death. K+ channel activity further maintains the cell membrane potential, a critical determinant of Ca2+ entry through Ca2+ channels. Cytosolic Ca2+ may trigger mechanisms required for cell proliferation and stimulate enzymes executing apoptosis. The switch between cell proliferation and apoptosis apparently depends on the magnitude and temporal organization of Ca2+ entry and on the functional state of the cell. Due to complex interaction with other signaling pathways, a given ion channel may play a dual role in both cell proliferation and apoptosis. Thus, specific ion channel blockers may abrogate both fundamental cellular mechanisms, depending on cell type, regulatory environment and condition of the cell. Clearly, considerable further experimental effort is required to fully understand the complex interplay between ion channels, cell proliferation and apoptosis.

Keywords

CD95/Fas Scramblase PGE2 Cell volume Lymphocytes Erythrocytes 

Notes

Acknowledgement

The authors acknowledge the meticulous preparation of the manuscript by Lejla Subasic. The work of the authors was supported by the Deutsche Forschungsgemeinschaft, Nr. La 315/4-3, La 315/6-1, Le 792/3-3, DFG Schwerpunkt Intrazelluläre Lebensformen La 315/11-1, and Bundesministerium für Bildung, Wissenschaft, Forschung und Technologic (Center for Interdisciplinary Clinical Research) 01 KS 9602.

References

  1. Adams T.E., McKern N.M., Ward C.W. 2004. Signalling by the type 1 insulin-like growth factor receptor: interplay with the epidermal growth factor receptor. Growth Factors 22:89–95PubMedCrossRefGoogle Scholar
  2. Albright C.D., da Costa K.A., Craciunescu C.N., Klem E., Mar M.H., Zeisel S.H. 2005. Regulation of choline deficiency apoptosis by epidermal growth factor in CWSV-1 rat hepatocytes. Cell Physiol. Biochem. 15:59–68PubMedCrossRefGoogle Scholar
  3. Alisi A., Demori I, Spagnuolo S., Pierantozzi E., Fugassa E., Leoni S. 2005. Thyroid status affects rat liver regeneration after partial hepatectomy by regulating cell cycle and apoptosis. Cell Physiol. Biochem. 15:69–76PubMedCrossRefGoogle Scholar
  4. Aoyama T., Matsui T., Novikov M., Park J., Hemmings B., Rosenzweig A. 2005. Serum and glucocorticoid-responsive kinase-1 regulates cardiomyocyte survival and hypertrophic response. Circulation 111:1652–1659PubMedCrossRefGoogle Scholar
  5. Bankers-Fulbright J.L., Kephart G.M., Loegering D.A., Bradford A.L., Okada S., Kita H., Gleich G.J. 1998. Sulfonylureas inhibit cytokine-induced eosinophil survival and activation. J. Immunol. 160:5546–5553PubMedGoogle Scholar
  6. Barvitenko N.N., Adragna N.C., Weber R.E. 2005. Erythrocyte signal transduction pathways, their oxygenation dependence and functional significance. Cell Physiol. Biochem. 15:1–18PubMedCrossRefGoogle Scholar
  7. Beauvais F., Michel L., Dubertret L. 1995. Human eosinophils in culture undergo a striking and rapid shrinkage during apoptosis. Role of K+ channels. J. Leukoc. Biol. 57:851–855PubMedGoogle Scholar
  8. Bennekou P. 1993. The voltage-gated non-selective cation channel from human red cells is sensitive to acetylcholine. Biochim. Biophys. Acta 1147:165–167PubMedGoogle Scholar
  9. Benson R.S., Heer S., Dive C., Watson A.J. 1996. Characterization of cell volume loss in CEM-C7A cells during dexamethasone-induced apoptosis. Am. J. Physiol 270:C1190–C1203PubMedGoogle Scholar
  10. Berg C.P., Engels I.H., Rothbart A., Lauber K., Renz A., Schlosser S.F., Schulze-Osthoff K., Wesselborg S. 2001. Human mature red blood cells express caspase-3 and caspase-8, but are devoid of mitochondrial regulators of apoptosis. Cell Death. Differ. 8:1197–1206PubMedCrossRefGoogle Scholar
  11. Bernhardt I., Hall A.C., Ellory J.C. 1991. Effects of low ionic strength media on passive human red cell monovalent cation transport. J. Physiol. 434:489–506PubMedGoogle Scholar
  12. Berridge M.J., Bootman M.D., Lipp P. 1998. Calcium–a life and death signal. Nature 395:645–648PubMedCrossRefGoogle Scholar
  13. Berridge M.J., Bootman M.D., Roderick H.L. 2003. Calcium signalling: dynamics, homeostasis and remodelling. Nat. Rev. Mol. Cell. Biol. 4:517–529PubMedCrossRefGoogle Scholar
  14. Berridge M.J., Lipp P., Bootman M.D. 2000. The versatility and universality of calcium signalling. Nat. Rev. Mol. Cell Biol. 1:11–21PubMedCrossRefGoogle Scholar
  15. Bikfalvi A., Savona C., Perollet C., Javerzat S. 1998. New insights in the biology of fibroblast growth factor-2. Angiogenesis. 1:155–173PubMedGoogle Scholar
  16. Bilmen S., Aksu T.A., Gumuslu S., Korgun D.K., Canatan D. 2001. Antioxidant capacity of G-6-PD-deficient erythrocytes. Clin. Chim. Acta 303:83–86PubMedCrossRefGoogle Scholar
  17. Boas F.E., Forman L., Beutler E. 1998. Phosphatidylserine exposure and red cell viability in red cell aging and in hemolytic anemia. Proc. Natl. Acad. Sci. USA 95:3077–3081PubMedCrossRefGoogle Scholar
  18. Bortner C.D., Cidlowski J.A. 1998. A necessary role for cell shrinkage in apoptosis. Biochem. Pharmacol. 56:1549–1559PubMedCrossRefGoogle Scholar
  19. Bortner C.D., Cidlowski J.A. 1999. Caspase independent/dependent regulation of K(+), cell shrinkage, and mitochondrial membrane potential during lymphocyte apoptosis. J. Biol. Chem. 274:21953–62PubMedCrossRefGoogle Scholar
  20. Bortner C.D., Cidlowski J.A. 2004. The role of apoptotic volume decrease and ionic homeostasis in the activation and repression of apoptosis. Pfluegers Arch. 448:313–318CrossRefGoogle Scholar
  21. Bortner C.D., Hughes F.M., Jr., Cidlowski J.A. 1997. A primary role for K+ and Na+ efflux in the activation of apoptosis. J. Biol. Chem. 272:32436–32442PubMedCrossRefGoogle Scholar
  22. Bosman G.J.C.G.M., Willekens F.L.A. 2005. Erythrocyte aging: A more than superficial resemblance to apoptosis? Cell Physiol. Biochem. 16:1–8Google Scholar
  23. Brand V.B., Sandu C.D., Duranton C., Tanneur V., Lang K.S., Huber S.M., Lang F. 2003. Dependence of Plasmodium falciparum in vitro growth on the cation permeability of the human host erythrocyte. Cell Physiol. Biochem. 13:347–356PubMedCrossRefGoogle Scholar
  24. Bratosin D., Leszczynski S., Sartiaux C., Fontaine O., Descamps J., Huart J.J., Poplineau J., Goudaliez F., Aminoff D., Montreuil J. 2001. Improved storage of erythrocytes by prior leukodepletion: flow cytometric evaluation of stored erythrocytes. Cytometry 46:351–356PubMedCrossRefGoogle Scholar
  25. Brugnara C., de Franceschi L., Alper S.L. 1993. Inhibition of Ca(2+)-dependent K+ transport and cell dehydration in sickle erythrocytes by clotrimazole and other imidazole derivatives. J. Clin. Invest. 92:520–526PubMedCrossRefGoogle Scholar
  26. Cabado A.G., Vieytes M.R., Botana L.M. 1994. Effect of ion composition on the changes in membrane potential induced with several stimuli in rat mast cells. J. Cell Physiol. 158:309–316PubMedCrossRefGoogle Scholar
  27. Cariers A., Reinehr R., Fischer R., Warskulat U., Haussinger D. 2002. c-Jun-N-terminal kinase dependent membrane targeting of CD95 in rat hepatic stellate cells. Cell Physiol. Biochem. 12:179–186PubMedCrossRefGoogle Scholar
  28. Chan H.C., Goldstein J., Nelson D.J. 1992. Alternate pathways for chloride conductance activation in normal and cystic fibrosis airway epithelial cells. Am. J. Physiol. 262:C1273–C1283PubMedGoogle Scholar
  29. Chin L.S., Park C.C., Zitnay K.M., Sinha M., DiPatri A.J. Jr., Perillan P., Simard J.M. 1997. 4-Aminopyridine causes apoptosis and blocks an outward rectifier K+ channel in malignant astrocytoma cell lines. J. Neurosci. Res. 48:122–127PubMedCrossRefGoogle Scholar
  30. Christophersen P., Bennekou P. 1991. Evidence for a voltage-gated, non-selective cation channel in the human red cell membrane. Biochim. Biophys. Acta 1065:103–106PubMedGoogle Scholar
  31. Colom L.V., Diaz M.E., Beers D.R., Neely A., Xie W.J., Appel S.H. 1998. Role of potassium channels in amyloid-induced cell death. J. Neurochem. 70:1925–1934PubMedGoogle Scholar
  32. Dangel G.R., Lang F., Lepple-Wienhues A. 2005. Effect of Sphingosin on Ca2+ entry and mitochondrial potential of Jurkat T cells – interaction with Bcl2. Cell Physiol. Biochem. 16:9–14PubMedCrossRefGoogle Scholar
  33. Dartsch P.C., Ritter M., Gschwentner M., Lang H.J., Lang F. 1995. Effects of calcium channel blockers on NIH 3T3 fibroblasts expressing the Ha-ras oncogene. Eur. J. Cell. Biol. 67:372–378PubMedGoogle Scholar
  34. Daugas E., Cande C., Kroemer G. 2001. Erythrocytes: death of a mummy. Cell Death. Differ. 8:1131–1133PubMedCrossRefGoogle Scholar
  35. Davies A.M. 2003. Regulation of neuronal survival and death by extracellular signals during development. EMBO J. 22:2537–2545PubMedCrossRefGoogle Scholar
  36. DeCoursey T.E., Chandy K.G., Gupta S., Cahalan M.D. 1984. Voltage-gated K+ channels in human T lymphocytes: a role in mitogenesis? Nature 307:465–468PubMedCrossRefGoogle Scholar
  37. Dekkers D.W., Comfurius P., Bevers E.M., Zwaal R.F. 2002. Comparison between Ca2+-induced scrambling of various fluorescently labelled lipid analogues in red blood cells. Biochem. J. 362:741–747PubMedCrossRefGoogle Scholar
  38. Del Carlo B., Pellegrini M., Pellegrino M. 2002. Calmodulin antagonists do not inhibit IK(Ca) channels of human erythrocytes. Biochim. Biophys. Acta 1558:133–141PubMedGoogle Scholar
  39. Deutsch C., Chen L.Q. 1993. Heterologous expression of specific K+ channels in T lymphocytes: functional consequences for volume regulation. Proc. Natl. Acad. Sci. USA 90:10036–10040PubMedGoogle Scholar
  40. Dinudom A., Komwatana P., Young J.A., Cook D.I. 1995. Control of the amiloride-sensitive Na+ current in mouse salivary ducts by intracellular anions is mediated by a G protein. J. Physiol. 487:549–555PubMedGoogle Scholar
  41. Dunn P.M. 1998. The action of blocking agents applied to the inner face of Ca(2+)-activated K+ channels from human erythrocytes. J. Membrane Biol. 165:133–143CrossRefGoogle Scholar
  42. Duranton C., Huber S., Tanneur V., Lang K., Brand V., Sandu C., Lang F. 2003. Electrophysiological properties of the Plasmodium Falciparum-induced cation conductance of human erythrocytes. Cell Physiol. Biochem. 13:189–198PubMedCrossRefGoogle Scholar
  43. Duranton C., Huber S.M., Lang F. 2002. Oxidation induces a Cl(−)-dependent cation conductance in human red blood cells. J. Physiol. 539:847–855PubMedCrossRefGoogle Scholar
  44. Enomoto K., Cossu M.F., Edwards C., Oka T. 1986. Induction of distinct types of spontaneous electrical activities in mammary epithelial cells by epidermal growth factor and insulin. Proc Natl. Acad. Sci. USA 83:4754–4758PubMedGoogle Scholar
  45. Erdo S., Michler A., Wolff J.R. 1991. GABA accelerates excitotoxic cell death in cortical cultures: protection by blockers of GABA-gated chloride channels. Brain Res. 542:254–258PubMedCrossRefGoogle Scholar
  46. Fadok V.A., Bratton D.L., Rose D.M., Pearson A., Ezekewitz R.A., Henson P.M. 2000. A receptor for phosphatidylserine-specific clearance of apoptotic cells. Nature 405:85–90PubMedCrossRefGoogle Scholar
  47. Faehling M., Koch E.D., Raithel J., Trischler G., Waltenberger J. 2001. Vascular endothelial growth factor-A activates Ca2+-activated K+ channels in human endothelial cells in culture. Int. J. Biochem. Cell Biol. 33:337–346PubMedCrossRefGoogle Scholar
  48. Fillon S., Klingel K., Warntges S., Sauter M., Gabrysch S., Pestel S., Tanneur V., Waldegger S., Zipfel A., Viebahn R., Haussinger D., Broer S., Kandolf R., Lang F. 2002. Expression of the serine/threonine kinase hSGK1 in chronic viral hepatitis. Cell Physiol. Biochem. 12:47–54PubMedGoogle Scholar
  49. Gamper N., Huber S.M., Badawi K., Lang F. 2000. Cell volume-sensitive sodium channels upregulated by glucocorticoids in U937 macrophages. Pfluegers Arch. 441:281–286CrossRefGoogle Scholar
  50. Gantner F., Uhlig S., Wendel A. 1995. Quinine inhibits release of tumor necrosis factor, apoptosis, necrosis and mortality in a murine model of septic liver failure. Eur. J. Pharmacol. 294:353–355PubMedCrossRefGoogle Scholar
  51. Gardos G. 1958. The function of calcium in the potassium permeability of human erythrocytes. Biochim. Biophys. Acta 30:653–654PubMedCrossRefGoogle Scholar
  52. Gomez-Angelats M., Bortner C.D., Cidlowski J.A. 2000. Protein kinase C (PKC) inhibits fas receptor-induced apoptosis through modulation of the loss of K+ and cell shrinkage. A role for PKC upstream of caspases. J. Biol. Chem. 275:19609–19619PubMedCrossRefGoogle Scholar
  53. Green D.R., Reed J.C. 1998. Mitochondria and apoptosis. Science 281:1309–1312PubMedGoogle Scholar
  54. Grygorczyk R., Schwarz W. 1983. Properties of the CA2+-activated K+ conductance of human red cells as revealed by the patch-clamp technique. Cell Calcium 4:499–510PubMedCrossRefGoogle Scholar
  55. Gulbins E., Jekle A., Ferlinz K., Grassme H., Lang F. 2000. Physiology of apoptosis. Am. J. Physiol. 279:F605–F615Google Scholar
  56. Gulbins E., Szabo I., Baltzer K., Lang F. 1997. Ceramide-induced inhibition of T lymphocyte voltage-gated potassium channel is mediated by tyrosine kinases. Proc. Natl. Acad. Sci. USA 94:7661–7666PubMedCrossRefGoogle Scholar
  57. Han H., Wang J., Zhang Y., Long H., Wang H., Xu D., Wang Z. 2004. HERG K channel conductance promotes H2O2-induced apoptosis in HEK293 cells: cellular mechanisms. Cell. Physiol. Biochem. 14:121–134PubMedCrossRefGoogle Scholar
  58. Harrison S.M., Roffler-Tarlov S.K. 1998. Cell death during development of testis and cerebellum in the mutant mouse weaver. Dev. Biol. 195:174–186PubMedCrossRefGoogle Scholar
  59. Henson P.M., Bratton D.L., Fadok V.A. 2001. The phosphatidylserine receptor: a crucial molecular switch? Nat. Rev. Mol. Cell Biol. 2:627–633Google Scholar
  60. Holmes T.C., Fadool D.A., Levitan I.B. 1996. Tyrosine phosphorylation of the Kv1.3 potassium channel. J. Neurosci. 16:1581–1590PubMedGoogle Scholar
  61. Huber S.M., Gamper N., Lang F. 2001. Chloride conductance and volume-regulatory nonselective cation conductance in human red blood cell ghosts. Pfluegers Arch. 441:551–558CrossRefGoogle Scholar
  62. Hughes F.M. Jr., Bortner C.D., Purdy G.D., Cidlowski J.A. 1997. Intracellular K+ suppresses the activation of apoptosis in lymphocytes. J. Biol. Chem. 272:30567–30576PubMedGoogle Scholar
  63. Hughes F.M. Jr., Cidlowski J.A. 1999. Potassium is a critical regulator of apoptotic enzymes in vitro and in vivo. Adv. Enzyme Regul. 39:157–171PubMedGoogle Scholar
  64. Jakob R., Krieglstein J. 1997. Influence of flupirtine on a G-protein coupled inwardly rectifying potassium current in hippocampal neurones. Br. J. Pharmacol. 122:1333–1338PubMedCrossRefGoogle Scholar
  65. Jiang B., Hattori N., Liu B., Nakayama Y., Kitagawa K., Inagaki C. 2004. Suppression of cell proliferation with induction of p21 by Cl(−) channel blockers in human leukemic cells. Eur. J. Pharmacol. 488:27–34PubMedCrossRefGoogle Scholar
  66. Jones G.S., Knauf P.A. 1985. Mechanism of the increase in cation permeability of human erythrocytes in low-chloride media. Involvement of the anion transport protein capnophorin. J. Gen. Physiol. 86:721–738PubMedCrossRefGoogle Scholar
  67. Kaestner L., Bollensdorff C., Bernhardt I. 1999. Non-selective voltage-activated cation channel in the human red blood cell membrane. Biochim. Biophys. Acta 1417:9–15PubMedGoogle Scholar
  68. Kitamura H., Yamauchi A., Sugiura T., Matsuoka Y., Horio M., Tohyama M., Shimada S., Imai E., Hori M. 1998. Inhibition of myo-inositol transport causes acute renal failure with selective medullary injury in the rat. Kidney Int. 53:146–153PubMedCrossRefGoogle Scholar
  69. Koch J., Korbmacher C. 1999. Osmotic shrinkage activates nonselective cation (NSC) channels in various cell types. J. Membrane Biol. 168:131–139CrossRefGoogle Scholar
  70. Kohn K.W., Pommier Y. 2005. Molecular interaction map of the p53 and Mdm2 logic elements, which control the Off-On switch of p53 in response to DNA damage. Biochem. Biophys. Res. Commun. 331:816–827PubMedCrossRefGoogle Scholar
  71. LaCelle P.L., Rothsteto A. 1966. The passive permeability of the red blood cell in cations. J. Gen. Physiol. 50:171–188PubMedCrossRefGoogle Scholar
  72. Lang F., Busch G.L., Ritter M., Volkl H., Waldegger S., Gulbins E., Haussinger D. 1998a. Functional significance of cell volume regulatory mechanisms. Physiol. Rev. 78:247–306Google Scholar
  73. Lang K.S., Duranton C., Poehlmann H., Myssina S., Bauer C., Lang F., Wieder T., Huber S.M. 2003b. Cation channels trigger apoptotic death of erythrocytes. Cell Death Differ. 10:249–256CrossRefGoogle Scholar
  74. Lang K.S., Fillon S., Schneider D., Rammensee H.G., Lang F. 2002a. Stimulation of TNF alpha expression by hyperosmotic stress. Pfluegers Arch. 443:798–803Google Scholar
  75. Lang F., Friedrich F., Kahn E., Woll E., Hammerer M., Waldegger S., Maly K., Grunicke H. 1991. Bradykinin-induced oscillations of cell membrane potential in cells expressing the Ha-ras oncogene. J. Biol. Chem. 266:4938–4942PubMedGoogle Scholar
  76. Lang F., Henke G., Embark H.M., Waldegger S., Palmada M., Bohmer C., Vallon V. 2003a. Regulation of channels by the serum and glucocorticoid-inducible kinase-implications for transport, excitability and cell proliferation. Cell Physiol. Biochem. 13:41–50Google Scholar
  77. Lang P.A., Kaiser S., Myssina S., Wieder T., Lang F., Huber S.M. 2003d. Role of Ca2+-activated K+ channels in human erythrocyte apoptosis. Am. J. Physiol. 285:C1553–C1560Google Scholar
  78. Lang P.A., Kempe D.S., Myssina S., Tanneur V., Birka C., Laufer S., Lang F., Wieder T., Huber S.M. 2005b. PGE(2) in the regulation of programmed erythrocyte death. Cell Death Differ. 12:415–428CrossRefGoogle Scholar
  79. Lang P.A., Kempe D.S., Tanneur V., Eisele K., Klarl B.A., Myssina S., Jendrossek V., Ishii S., Shimizu T., Waidmann M., Hessler G., Huber S.M., Lang F., Wieder T. 2005c. Stimulation of erythrocyte ceramide formation by platelet-activating factor. J. Cell Sci. 118:1233–1243CrossRefGoogle Scholar
  80. Lang K.S., Lang P.A., Bauer C., Duranton C., Wieder T., Huber S.M., Lang F. 2005a. Mechanisms of suicidal erythrocyte death. Cell Physiol. Biochem. 15:195–202CrossRefGoogle Scholar
  81. Lang F., Lang P.A., Lang K.S., Brand V., Tanneur V., Duranton C., Wieder T., Huber S.M. 2004a. Channel-induced apoptosis of infected host cells-the case of malaria. Pfluegers Arch. 448:319–324CrossRefGoogle Scholar
  82. Lang F., Madlung J., Bock J., Lukewille U., Kaltenbach S., Lang K.S., Belka C., Wagner C.A., Lang H.J., Gulbins E., Lepple-Wienhues A. 2000a. Inhibition of Jurkat-T-lymphocyte Na+/H+-exchanger by CD95(Fas/Apo-1)-receptor stimulation. Pfluegers Arch. 440:902–907CrossRefGoogle Scholar
  83. Lang F., Madlung J., Siemen D., Ellory C., Lepple-Wienhues A., Gulbins E. 2000b. The involvement of caspases in the CD95(Fas/Apo-1)- but not swelling-induced cellular taurine release from Jurkat T-lymphocytes. Pfluegers Arch. 440:93–99CrossRefGoogle Scholar
  84. Lang F., Madlung J., Uhlemann A.C., Risler T., Gulbins E. 1998b. Cellular taurine release triggered by stimulation of the Fas(CD95) receptor in Jurkat lymphocytes. Pfluegers Arch. 436:377–383CrossRefGoogle Scholar
  85. Lang K.S., Myssina S., Brand V., Sandu C., Lang P.A., Berchtold S., Huber S.M., Lang F., Wieder T. 2004b. Involvement of ceramide in hyperosmotic shock-induced death of erythrocytes. Cell Death Differ. 11:231–243CrossRefGoogle Scholar
  86. Lang K.S., Myssina S., Tanneur V., Wieder T., Huber S.M., Lang F., Duranton C. 2003c. Inhibition of erythrocyte cation channels and apoptosis by ethylisopropylamiloride. Naunyn Schmiedebergs Arch. Pharmacol. 367:391–396CrossRefGoogle Scholar
  87. Lang F., Ritter M., Gamper N., Huber S., Fillon S., Tanneur V., Lepple-Wienhues A., Szabo I., Gulbins E. 2000c. Cell volume in the regulation of cell proliferation and apoptotic cell death. Cell Physiol. Biochem. 10:417–428CrossRefGoogle Scholar
  88. Lang K.S., Roll B., Myssina S., Schittenhelm M., Scheel-Walter H.G., Kanz L., Fritz J., Lang F., Huber S.M., Wieder T. 2002b. Enhanced erythrocyte apoptosis in sickle cell anemia, thalassemia and glucose-6-phosphate dehydrogenase deficiency. Cell Physiol. Biochem. 12:365–372CrossRefGoogle Scholar
  89. Lang F., Szabo I., Lepple-Wienhues A., Siemen D., Gulbins E. 1999. Physiology of Receptor-Mediated Lymphocyte Apoptosis. News Physiol. Sci. 14:194–200PubMedGoogle Scholar
  90. Lang F., Waldegger S., Woell E., Ritter M., Maly K., Grunicke H. 1992. Effects of inhibitors and ion substitutions on oscillations of cell membrane potential in cells expressing the RAS oncogene. Pfluegers Arch. 421:416–424CrossRefGoogle Scholar
  91. Lang P.A., Warskulat U., Heller-Stilb B., Huang D.Y., Grenz A., Myssina S., Duszenko M., Lang F., Haussinger D., Vallon V., Wieder T. 2003e. Blunted apoptosis of erythrocytes from taurine transporter deficient mice. Cell Physiol. Biochem. 13:337–346Google Scholar
  92. Lauritzen I., De Weille J.R., Lazdunski M. 1997. The potassium channel opener (−)-cromakalim prevents glutamate-induced cell death in hippocampal neurons. J. Neurochem. 69:1570–1579PubMedGoogle Scholar
  93. Leinders T., van Kleef R.G., Vijverberg H.P. 1992. Single Ca(2+)-activated K+ channels in human erythrocytes: Ca2+ dependence of opening frequency but not of open lifetimes. Biochim. Biophys. Acta 1112:67–74PubMedGoogle Scholar
  94. Lepple-Wienhues A., Belka C., Laun T., Jekle A., Walter B., Wieland U., Welz M., Heil L., Kun J., Busch G., Weller M., Bamberg M., Gulbins E., Lang F. 1999. Stimulation of CD95 (Fas) blocks T lymphocyte calcium channels through sphingomyelinase and sphingolipids. Proc Natl. Acad. Sci. USA 96:13795–13800PubMedCrossRefGoogle Scholar
  95. Lepple-Wienhues A., Szabo I., Laun T., Kaba N.K., Gulbins E., Lang F. 1998. The tyrosine kinase p56lck mediates activation of swelling-induced chloride channels in lymphocytes. J. Cell Biol. 141:281–286PubMedCrossRefGoogle Scholar
  96. Lepple-Wienhues A., Wieland U., Laun T., Heil L., Stern M., Lang F. 2001. A src-like kinase activates outwardly rectifying chloride channels in CFTR-defective lymphocytes. FASEB J. 15:927–931PubMedCrossRefGoogle Scholar
  97. Liu X.H., Kirschenbaum A., Yu K., Yao S., Levine A.C. 2005. Cyclooxygenase-2 suppresses hypoxia-induced apoptosis via a combination of direct and indirect inhibition of p53 activity in a human prostate cancer cell line. J. Biol. Chem. 280:3817–3823PubMedGoogle Scholar
  98. Liu X.M., Tao M., Han X.D., Fan Q., Lin J.R. 2001. Gating kinetics of potassium channel and effects of nerve growth factors in PC12 cells analyzed with fractal model. Acta Pharmacol. Sin. 22:103–110PubMedGoogle Scholar
  99. Long H., Han H., Yang B., Wang Z. 2003. Opposite cell density-dependence between spontaneous and oxidative stress-induced apoptosis in mouse fibroblast L-cells. Cell Physiol. Biochem. 13:401–414PubMedCrossRefGoogle Scholar
  100. Maeno E., Ishizaki Y., Kanaseki T., Hazama A., Okada Y. 2000. Normotonic cell shrinkage because of disordered volume regulation is an early prerequisite to apoptosis. Proc. Natl. Acad. Sci. USA 97:9487–9492PubMedCrossRefGoogle Scholar
  101. Marunaka Y., Nakahari T., Tohda H. 1994. Cytosolic [Cl−] regulates Na+ absorption in fetal alveolar epithelium?: roles of cAMP and Cl channels. Jpn. J. Physiol. 44:S281–S288PubMedGoogle Scholar
  102. Mauro T., Dixon D.B., Komuves L., Hanley K., Pappone P.A. 1997. Keratinocyte K+ channels mediate Ca2+-induced differentiation. J. Invest. Dermatol. 108:864–870PubMedCrossRefGoogle Scholar
  103. Mavelli I., Ciriolo M.R., Rossi L., Meloni T., Forteleoni G., De Flora A., Benatti U., Morelli A., Rotilio G. 1984. Favism: a hemolytic disease associated with increased superoxide dismutase and decreased glutathione peroxidase activities in red blood cells. Eur. J. Biochem. 139:13–18PubMedCrossRefGoogle Scholar
  104. Michea L., Ferguson D.R., Peters E.M., Andrews P.M., Kirby M.R., Burg M.B. 2000. Cell cycle delay and apoptosis are induced by high salt and urea in renal medullary cells. Am. J. Physiol. 278:F209–F218Google Scholar
  105. Migheli A., Attanasio A., Lee W.H., Bayer S.A., Ghetti B. 1995. Detection of apoptosis in weaver cerebellum by electron microscopic in situ end-labeling of fragmented DNA. Neurosci. Lett. 199:53–56PubMedCrossRefGoogle Scholar
  106. Migheli A., Piva R., Wei J., Attanasio A., Casolino S., Hodes M.E., Dlouhy S.R., Bayer S.A., Ghetti B. 1997. Diverse cell death pathways result from a single missense mutation in weaver mouse. Am. J. Pathol. 151:1629–1638PubMedGoogle Scholar
  107. Miki T., Tashiro F., Iwanaga T., Nagashima K., Yoshitomi H., Aihara H., Nitta Y., Gonoi T., Inagaki N., Miyazaki J., Seino S. 1997. Abnormalities of pancreatic islets by targeted expression of a dominant-negative KATP channel. Proc Natl. Acad. Sci. USA 94:11969–11973PubMedCrossRefGoogle Scholar
  108. Miller G.W., Schnellmann R.G. 1993. Cytoprotection by inhibition of chloride channels: the mechanism of action of glycine and strychnine. Life Sci. 53:1211–1215PubMedGoogle Scholar
  109. Montague J.W., Bortner C.D., Hughes F.M. Jr., Cidlowski J.A. 1999. A necessary role for reduced intracellular potassium during the DNA degradation phase of apoptosis. Steroids 64:563–569PubMedCrossRefGoogle Scholar
  110. Moran J., Hernandez-Pech X., Merchant-Larios H., Pasantes-Morales H. 2000. Release of taurine in apoptotic cerebellar granule neurons in culture. Pfluegers Arch. 439:271–277Google Scholar
  111. Murtomaki S., Trenkner E., Wright J.M., Saksela O., Liesi P. 1995. Increased proteolytic activity of the granule neurons may contribute to neuronal death in the weaver mouse cerebellum. Dev. Biol. 168:635–648PubMedGoogle Scholar
  112. Myssina S., Lang P.A., Kempe D.S., Kaiser S., Huber S.M., Wieder T., Lang F. 2004. Cl− channel blockers NPPB and niflumic acid blunt Ca2+-induced erythrocyte ‘apoptosis’. Cell Physiol. Biochem. 14:241–248PubMedCrossRefGoogle Scholar
  113. Nilius B., Droogmans G. 2001. Ion channels and their functional role in vascular endothelium. Physiol. Rev. 81:1415–1459PubMedGoogle Scholar
  114. Nilius B., Wohlrab W. 1992. Potassium channels and regulation of proliferation of human melanoma cells. J. Physiol. 445:537–548PubMedGoogle Scholar
  115. O’Lague P.H., Huttner S.L., Vandenberg C.A., Morrison-Graham K., Horn R. 1985. Morphological properties and membrane channels of the growth cones induced in PC12 cells by nerve growth factor. J. Neurosci. Res. 13:301–321PubMedGoogle Scholar
  116. Okada Y., Maeno E., Shimizu T., Manabe K., Mori S., Nabekura T. 2004. Dual roles of plasmalemmal chloride channels in induction of cell death. Pfluegers Arch. 448:287–295CrossRefGoogle Scholar
  117. Oo T.F., Blazeski R., Harrison S.M., Henchcliffe C., Mason C.A., Roffler-Tarlov S.K., Burke R.E. 1996. Neuron death in the substantia nigra of weaver mouse occurs late in development and is not apoptotic. J. Neurosci. 16:6134–6145PubMedGoogle Scholar
  118. Pal S., He K., Aizenman E. 2004. Nitrosative stress and potassium channel-mediated neuronal apoptosis: is zinc the link? Pfluegers Arch. 448:296–303CrossRefGoogle Scholar
  119. Pandiella A., Magni M., Lovisolo D., Meldolesi J. 1989. The effect of epidermal growth factor on membrane potential. Rapid hyperpolarization followed by persistent fluctuations. J. Biol. Chem. 264:12914–12921PubMedGoogle Scholar
  120. Pappas C.A., Ritchie J.M. 1998. Effect of specific ion channel blockers on cultured Schwann cell proliferation. Glia 22:113–120PubMedCrossRefGoogle Scholar
  121. Pappone P.A., Ortiz-Miranda S.I. 1993. Blockers of voltage-gated K channels inhibit proliferation of cultured brown fat cells. Am. J. Physiol. 264:C1014–C1019PubMedGoogle Scholar
  122. Parekh A.B., Penner R. 1997. Store depletion and calcium influx. Physiol. Rev. 77:901–930PubMedGoogle Scholar
  123. Parekh A.B., Putney J.W. Jr. 2005. Store-operated calcium channels. Physiol. Rev. 85:757–810PubMedCrossRefGoogle Scholar
  124. Patel A.J., Lazdunski M. 2004. The 2P-domain K+ channels: role in apoptosis and tumorigenesis. Pfluegers Arch. 448:261–273CrossRefGoogle Scholar
  125. Pellegrino M., Pellegrini M. 1998. Modulation of Ca2+-activated K+ channels of human erythrocytes by endogenous cAMP-dependent protein kinase. Pfluegers Arch. 436:749–756CrossRefGoogle Scholar
  126. Perez G.I., Maravei D.V., Trbovich A.M., Cidlowski J.A., Tilly J.L., Hughes F.M. Jr. 2000. Identification of potassium-dependent and -independent components of the apoptotic machinery in mouse ovarian germ cells and granulosa cells. Biol. Reprod. 63:1358–1369PubMedCrossRefGoogle Scholar
  127. Phipps D.J., Branch D.R., Schlichter L.C. 1996. Chloride-channel block inhibits T lymphocyte activation and signalling. Cell Signal. 8:141–149PubMedCrossRefGoogle Scholar
  128. Pozzi S., Malferrari G., Biunno I., Samaja M. 2002. Low-flow ischemia and hypoxia stimulate apoptosis in perfused hearts independently of reperfusion. Cell Physiol. Biochem. 12:39–46PubMedCrossRefGoogle Scholar
  129. Prehn J.H., Jordan J., Ghadge G.D., Preis E., Galindo M.F., Roos R.P., Krieglstein J., Miller R.J. 1997. Ca2+ and reactive oxygen species in staurosporine-induced neuronal apoptosis. J. Neurochem. 68:1679–1685PubMedGoogle Scholar
  130. Qian D., Weiss A. 1997. T cell antigen receptor signal transduction. Curr. Opin. Cell Biol. 9:205–212PubMedCrossRefGoogle Scholar
  131. Rice L., Alfrey C.P. 2005. The negative regulation of red cell mass by neocytolysis: physiologic and pathophysiologic manifestations. Cell Physiol. Biochem. 15:245–250PubMedCrossRefGoogle Scholar
  132. Ritter M., Woll E., Haller T., Dartsch P.C., Zwierzina H., Lang F. 1997. Activation of Na+/H+-exchanger by transforming Ha-ras requires stimulated cellular calcium influx and is associated with rearrangement of the actin cytoskeleton. Eur. J. Cell Biol. 72:222–228PubMedGoogle Scholar
  133. Ritter M., Woll E., Waldegger S., Haussinger D., Lang H.J., Scholz W., Scholkens B., Lang F. 1993. Cell shrinkage stimulates bradykinin-induced cell membrane potential oscillations in NIH 3T3 fibroblasts expressing the ras-oncogene. Pfluegers Arch. 423:221–224CrossRefGoogle Scholar
  134. Rosette C., Karin M. 1996. Ultraviolet light and osmotic stress: activation of the JNK cascade through multiple growth factor and cytokine receptors. Science 274:1194–1197PubMedCrossRefGoogle Scholar
  135. Rotoli B.M., Uggeri J., Dall’Asta V., Visigalli R., Barilli A., Gatti R., Orlandini G., Gazzola G.C., Bussolati O. 2005. Inhibition of glutamine synthetase triggers apoptosis in asparaginase-resistant cells. Cell Physiol. Biochem. 15:281–292PubMedCrossRefGoogle Scholar
  136. Rouzaire-Dubois B., Milandri J.B., Bostel S., Dubois J.M. 2000. Control of cell proliferation by cell volume alterations in rat C6 glioma cells. Pfluegers Arch. 440:881–888CrossRefGoogle Scholar
  137. Sanders DA., Fiddes I., Thompson D.M., Philpott M.P., Westgate G.E., Kealey T. 1996. In the absence of streptomycin, minoxidil potentiates the mitogenic effects of fetal calf serum, insulin-like growth factor 1, and platelet-derived growth factor on NTH 3T3 fibroblasts in a K+ channel-dependent fashion. J. Invest. Dermatol. 107:229–234PubMedCrossRefGoogle Scholar
  138. Santella L. 1998. The role of calcium in the cell cycle: facts and hypotheses. Biochem Biophys. Res. Commun. 244:317–324PubMedCrossRefGoogle Scholar
  139. Santella L., Kyozuka K., De Riso L., Carafoli E. 1998. Calcium, protease action, and the regulation of the cell cycle. Cell Calcium 23:123–130PubMedCrossRefGoogle Scholar
  140. Shen M.R., Droogmans G., Eggermont J., Voets T., Ellory J.C., Nilius B. 2000. Differential expression of volume-regulated anion channels during cell cycle progression of human cervical cancer cells. J. Physiol. 529 Pt 2:385–394PubMedGoogle Scholar
  141. Shindo M., Imai Y., Sohma Y. 2000. A novel type of ATP block on a Ca2+-activated K+ channel from bullfrog erythrocytes. Biophys J 79:287–297PubMedCrossRefGoogle Scholar
  142. Shrode L.D., Tapper H., Grinstein S. 1997. Role of intracellular pH in proliferation, transformation, and apoptosis. J. Bioenerg. Biomembr. 29:393–399PubMedCrossRefGoogle Scholar
  143. Skryma R.N., Prevarskaya N.B., Dufy-Barbe L., Odessa M.F., Audin J., Dufy B. 1997. Potassium conductance in the androgen-sensitive prostate cancer cell line, LNCaP: involvement in cell proliferation. Prostate 33:112–122PubMedCrossRefGoogle Scholar
  144. Spassova M.A., Soboloff J., He L.P., Hewavitharana T., Xu W., Venkatachalam K., van Rossum D.B., Patterson R.L., Gill D.L. 2004. Calcium entry mediated by SOCs and TRP channels: variations and enigma. Biochim. Biophys. Acta 1742:9–20PubMedGoogle Scholar
  145. Storey N.M., Gomez-Angelats M., Bortner C.D., Armstrong D.L., Cidlowski J.A. 2003. Stimulation of Kv1.3 potassium channels by death receptors during apoptosis in Jurkat T lymphocytes. J. Biol. Chem. 278:33319–33326PubMedCrossRefGoogle Scholar
  146. Strobl J.S., Wonderlin W.F., Flynn D.C. 1995. Mitogenic signal transduction in human breast cancer cells. Gen. Pharmacol. 26:1643–1649PubMedGoogle Scholar
  147. Sturm J.W., Zhang H., Magdeburg R., Hasenberg T., Bonninghoff R., Oulmi J., Keese M., McCuskey R. 2004. Altered apoptotic response and different liver structure during liver regeneration in FGF-2-deficient mice. Cell Physiol. Biochem. 14:249–260PubMedCrossRefGoogle Scholar
  148. Szabo I., Adams C., Gulbins E. 2004. Ion channels and membrane rafts in apoptosis. Pfluegers Arch. 448:304–312Google Scholar
  149. Szabo I., Gulbins E., Apfel H., Zhang X., Barth P., Busch A.E., Schlottmann K., Pongs O., Lang F. 1996. Tyrosine phosphorylation-dependent suppression of a voltage-gated K+ channel in T lymphocytes upon Fas stimulation. J. Biol. Chem. 271:20465–20469PubMedGoogle Scholar
  150. Szabo I., Gulbins E., Lang F. 1997. Regulation of Kv1.3 during Fas-induced apoptosis. Cell Physiol. Biochem. 7:148–158Google Scholar
  151. Szabo I., Lepple-Wienhues A., Kaba K.N., Zoratti M., Gulbins E., Lang F. 1998. Tyrosine kinase-dependent activation of a chloride channel in CD95-induced apoptosis in T lymphocytes. Proc. Natl. Acad. Sci. USA 95:6169–6174PubMedGoogle Scholar
  152. Takahashi N., Wang X., Tanabe S., Uramoto H., Jishage K., Uchida S., Sasaki S., Okada Y. 2005. ClC-3-independent sensitivity of apoptosis to Cl− channel blockers in mouse cardiomyocytes. Cell Physiol. Biochem. 15:263–270PubMedCrossRefGoogle Scholar
  153. Tallquist M., Kazlauskas A. 2004. PDGF signaling in cells and mice. Cytokine Growth Factor Rev. 15:205–213PubMedCrossRefGoogle Scholar
  154. Teijeiro R., Rios R, Costoya J.A., Castro R., Bello J.L., Devesa J., Arce V.M. 2002. Activation of human somatostatin receptor 2 promotes apoptosis through a mechanism that is independent from induction of p53. Cell Physiol. Biochem. 12:31–38PubMedCrossRefGoogle Scholar
  155. Tohda H., Foskett J.K., O’Brodovich H., Marunaka Y. 1994. Cl− regulation of a Ca(2+)-activated nonselective cation channel in beta-agonist-treated fetal distal lung epithelium. Am. J. Physiol. 266:C104–C109PubMedGoogle Scholar
  156. Varela D., Simon F., Riveros A., Jorgensen F., Stutzin A. 2004. NAD(P)H oxidase-derived H(2)O(2) signals chloride channel activation in cell volume regulation and cell proliferation. J. Biol. Chem. 279:13301–13304PubMedCrossRefGoogle Scholar
  157. Volk T., Fromter E., Korbmacher C. 1995. Hypertonicity activates nonselective cation channels in mouse cortical collecting duct cells. Proc. Natl. Acad. Sci. USA 92:8478–8482PubMedGoogle Scholar
  158. Walsh M.F., Thamilselvan V., Grotelueschen R., Farhana L., Basson M. 2003. Absence of adhesion triggers differential FAK and SAPKp38 signals in SW620 human colon cancer cells that may inhibit adhesiveness and lead to cell death. Cell Physiol. Biochem. 13:135–146PubMedCrossRefGoogle Scholar
  159. Wang G.L., Wang X.R., Lin M.J., He H., Lan X.J., Guan Y.Y. 2002. Deficiency in ClC-3 chloride channels prevents rat aortic smooth muscle cell proliferation. Circ. Res. 91:E28–E32PubMedCrossRefGoogle Scholar
  160. Wang S., Melkoumian Z., Woodfork K.A., Cather C., Davidson A.G., Wonderlin W.F., Strobl J.S. 1998. Evidence for an early G1 ionic event necessary for cell cycle progression and survival in the MCF-7 human breast carcinoma cell line. J. Cell Physiol. 176:456–464PubMedCrossRefGoogle Scholar
  161. Wang Z. 2004. Roles of K+ channels in regulating tumour cell proliferation and apoptosis. Pfluegers Arch. 448:274–286CrossRefGoogle Scholar
  162. Wehner F., Böhmer C., Heinzinger H., van den B.F., Tinel H. 2000. The hypertonicity-induced Na(+) conductance of rat hepatocytes: physiological significance and molecular correlate. Cell Physiol. Biochem. 10:335–340PubMedCrossRefGoogle Scholar
  163. Wehner F., Sauer H., Kinne R.K. 1995. Hypertonic stress increases the Na+ conductance of rat hepatocytes in primary culture. J. Gen. Physiol. 105:507–535PubMedCrossRefGoogle Scholar
  164. Wei L., Xiao A.Y., Tin C., Yang A., Lu Z.Y., Yu S.P. 2004. Effects of chloride and potassium channel blockers on apoptotic cell shrinkage and apoptosis in cortical neurons. Pfluegers Arch. 448:325–334CrossRefGoogle Scholar
  165. Wenzel U., Daniel H. 2004. Early and late apoptosis events in human transformed and non-transformed colonocytes are independent on intracellular acidification. Cell Physiol. Biochem. 14:65–76PubMedCrossRefGoogle Scholar
  166. Whitfield J.F., Bird R.P., Chakravarthy B.R., Isaacs R.J., Morley P. 1995. Calcium-cell cycle regulator, differentiator, killer, chemopreventor, and maybe, tumor promoter. J. Cell Biochem. 22:74–91Google Scholar
  167. Wiecha J., Reineker K., Reitmayer M., Voisard R., Hannekum A., Mattfeldt T., Waltenberger J., Hombach V. 1998. Modulation of Ca2+-activated K+ channels in human vascular cells by insulin and basic fibroblast growth factor. Growth Horm. IGF. Res. 8:175–181PubMedGoogle Scholar
  168. Wieder T., Essmann F., Prokop A., Schmelz K., Schulze-Osthoff K., Beyaert R., Dorken B., Daniel P.T. 2001. Activation of caspase-8 in drug-induced apoptosis of B-lymphoid cells is independent of CD95/Fas receptor-ligand interaction and occurs downstream of caspase-3. Blood 97:1378–1387PubMedCrossRefGoogle Scholar
  169. Wondergem R., Gong W., Monen S.H., Dooley S.N., Gonce J.L., Conner T.D., Houser M., Ecay T.W., Ferslew K.E. 2001. Blocking swelling-activated chloride current inhibits mouse liver cell proliferation. J. Physiol. 532:661–672PubMedCrossRefGoogle Scholar
  170. Wonderlin W.F., Strobl J.S. 1996. Potassium channels, proliferation and G1 progression. J. Membrane Biol. 154:91–107CrossRefGoogle Scholar
  171. Woon L.A., Holland J.W., Kable E.P., Roufogalis B.D. 1999. Ca2+ sensitivity of phospholipid scrambling in human red cell ghosts. Cell Calcium 25:313–320PubMedCrossRefGoogle Scholar
  172. Yu S.P., Yeh C.H., Sensi S.L., Gwag B.J., Canzoniero L.M., Farhangrazi Z.S., Ying H.S., Tian M., Dugan L.L., Choi D.W. 1997. Mediation of neuronal apoptosis by enhancement of outward potassium current. Science 278:114–117PubMedCrossRefGoogle Scholar
  173. Yurinskaya V.E., Goryachaya T.S., Guzhova T.V., Moshkov A.V., Rozanov Y.M., Sakuta G.A., Shirokova A.V., Shumilina E.V., Vassilieva I.O., Lang F., Vereninov A.A. 2005a. Potassium and sodium balance in U937 cells during apoptosis with and without cell shrinkage. Cell Physiol. Biochem. 16: 155–162CrossRefGoogle Scholar
  174. Yurinskaya V.E., Moshkov A.V., Rozanov Yu.M., Shirokova A.V., Vassilieva I.O., Shumilina E.V., Lang F., Volgareva A.A., Vereninov A.A. 2005b. Thymocyte K+, Na+ and water balance during dexamethasone and etoposide induced apoptosis. Cell Physiol. Biochem. 16:15–22CrossRefGoogle Scholar
  175. Zhou Q., Kwan H.Y., Chan H.C., Jiang J.L., Tam S.C., Yao X. 2003. Blockage of voltage-gated K+ channels inhibits adhesion and proliferation of hepatocarcinoma cells. Int. J. Mol. Med. 11:261–266PubMedGoogle Scholar
  176. Zhou Q., Zhao J., Wiedmer T., Sims P.J. 2002. Normal hemostasis but defective hematopoietic response to growth factors in mice deficient in phospholipid scramblase 1. Blood 99:4030–4038PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • F. Lang
    • 1
  • M. Föller
    • 1
  • K.S. Lang
    • 1
  • P.A. Lang
    • 1
  • M. Ritter
    • 2
  • E. Gulbins
    • 1
  • A. Vereninov
    • 3
  • S.M. Huber
    • 1
  1. 1.Department of PhysiologyUniversity of TübingenGermany
  2. 2.Department of PhysiologyUniversity of SalzburgAustria
  3. 3.Institute of CytologyRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations