The Journal of Membrane Biology

, Volume 206, Issue 1, pp 61–72 | Cite as

Electrogenic H+ Transport and pH Gradients Generated by a V-H+-ATPase in the Isolated Perfused Larval Drosophila Midgut

  • S. Shanbhag
  • S. Tripathi


A method for microperfusion of isolated segments of the midgut epithelium of Drosophila larvae has been developed to characterize cellular transport pathways and membrane transporters. Stereological ultrastructural morphometry shows that this epithelium has unusually long tight junctions, with little or no lateral intercellular volume normally found in most epithelia. Amplification of the apical and basal aspects of the cells, by ≈ 17-fold and ≈ 7-fold, respectively, predicts an almost exclusively transcellular transport system for solutes. This correlates with the high lumen-negative transepithelial potential (Vt) of 38 to 45 mV and high resistance (Rt) of 800 to 1400 Ω • cm2 measured by terminated cable analysis, in contrast to other microperfused epithelia like the renal proximal tubule. Several blockers (amiloride 10−4 M, ouabain 10−4 M, bumetanide 10−4 M), K+-free solutions, or organic solutes such as D-glucose 10 mM or DL-alanine 0.5 mM failed to affect Vt or Rt. Bafilomycin-A1 (3 to 5 μM) decreased Vt by ≈ 40% and short-circuit current (Isc) by ≈ 50%, and decreased intracellular pH when applied from the basal side only, consistent with an inhibition of an electrogenic V-H+-ATPase located in the basal membrane. Gradients of H+ were detected by pH microelectrodes close to the basal aspect of the cells or within the basal extracellular labyrinth. The apical membrane is more conductive than the basal membrane, facilitating secretion of base (presumably HCO3), driven by the basal V-H+-ATPase.

Key words

Bafilomycin-A1 Ultrastructural morphometry Cable analysis Ion-selective microelectrodes Microperfusion 



basal extracellular labyrinth;




N-2-hydroxyethylpiperazine-N’-2-ethaesulfonic acid;


short-circuit current;


lateral intracellular space;


transepithelial resistance;


apical cell membrane potential;


basal cell membrane potential;




transepithelial potential, perfusion end;


transepithelial potential, collection end.



We record our gratitude to the late Peter D’Souza and to J. N. Parmar for fabrication of the microperfusion apparatus and excellent machining support. We thank T. V. Abraham for electronics and data acquisition software. Supported by Interdisciplinary Programme 10P-809.


  1. Ashburner M. 1989. Drosophila. A Laboratory Manual. Second edition, Cold Spring Harbor Laboratory Press, New YorkGoogle Scholar
  2. Berenbaum M. 1980. Adaptive significance of midgut pH in larval Lepidoptera. Am. Nat. 115:138–146CrossRefGoogle Scholar
  3. Beyenbach K.W., Pannabecker T.L. Nagel W. 2000. Central role of the apical membrane H+-ATPase in electrogenesis and epithelial transport in malpighian tubules. J. Exp. Biol. 203:1459–1468PubMedGoogle Scholar
  4. Boudko D.Y., Moroz L.L., Harvey W.R., Linser P.J. 2001a. Alkalinization by chloride / bicarbonate pathway in larval mosquito midgut. Proc. Natl. Acad. Sci. USA 98:15354–15359CrossRefGoogle Scholar
  5. Boudko D.Y., Moroz L.L., Linser P.J., Trimarchi J.R., Smith P.J., Harvey W.R. 2001b. In situ analysis of pH gradients in mosquito larvae using non-invasive, self-referencing, pH-sensitive microelectrodes. J. Exp. Biol. 204:691–699Google Scholar
  6. Brown D., Gluck S., Hartwig J. 1987. Structure of the novel membrane-coating material in proton-secreting epithelial cells and identification as an H+ATPase. J. Cell Biol. 105:1637–1648PubMedGoogle Scholar
  7. Dadd R.H. 1975. Alkalinity within the midgut of mosquito larvae with alkaline-active digestive enzymes. J. Insect Physiol. 21:1847–1853CrossRefPubMedGoogle Scholar
  8. Dow J.A.T. 1984. Extremely high pH in biological systems; a model for carbonate transport. Am. J. Physiol. 246:R633–R635PubMedGoogle Scholar
  9. Dow J.A.T. 1986. Insect midgut function. Adv. Insect Physiol. 19:187–328Google Scholar
  10. Dow J.A.T. 1992. pH gradients in Lepidopteran midgut. J. Exp. Biol. 172:355–375PubMedGoogle Scholar
  11. Dubreuil R.R., Frankel J., Wang P., Howrylak J., Kappil M., Grushko T.A. 1998. Mutations of α Spectrin and labial block cuprophilic cell differentiation and acid secretion in the middle midgut of Drosophila larvae. Dev. Biol. 194:1–11CrossRefPubMedGoogle Scholar
  12. Dubreuil R.R., Grushko T., Baumann O. 2001. Differential effects of a labial mutation on the development, structure, and function of stomach acid-secreting cells in Drosophila melanogaster larvae and adults. Cell Tissue Res. 306:167–178CrossRefPubMedGoogle Scholar
  13. Filippova M., Ross L.S., Gill S.S. 1998. Cloning of the V ATPase B subunit cDNA from Culex quinquefasciatus and expression of the B and C subunits in mosquitoes. Insect Mol. Biol. 7:223–232PubMedGoogle Scholar
  14. Greenberg B. 1968. Micro-potentiometric pH determinations of muscoid maggot digestive tracts. Ann. Entomol. Soc. Am. 61:365–367PubMedGoogle Scholar
  15. Harrison J.F. 2001. Insect acid-base physiology. Annu. Rev. Entomol. 46:221–259CrossRefPubMedGoogle Scholar
  16. Klein U., Koch A., Moffett D.F. 1996. Ion transport in Lepidoptera. In: M.J. Lehane, P.F. Billingsley, editors. Biology of the Insect Midgut. Chapman & Hall, London, pp. 236–264Google Scholar
  17. Martin J.S., Martin M.M. 1984. Surfactants: their role in preventing the precipitation of proteins by tannins in insect guts. Oecologia 61:342–345CrossRefGoogle Scholar
  18. Maunsbach A.B., Boulpaep E.L. 1984. Quantitative ultrastructure and functional correlates in proximal tubule of Ambystoma and Necturus. Am. J. Physiol. 246:F710–F724PubMedGoogle Scholar
  19. Schultz J.C., Lechowicz M.J. 1986. Host plant, larval age and feeding behavior influence midgut pH in the gypsy moth (Lymantria dispar). Oecologia 71:133–137CrossRefGoogle Scholar
  20. Shanbhag S.R., Singh K., Singh R.N. 1992. Ultrastucture of the femoral chordotonal organs and their novel synaptic organization in the legs of Drosophila melanogaster Meigen (Diptera: Drosophilidae). Int. J. Insect Morphol. & Embryol 21:311–322Google Scholar
  21. Shanbhag S., Tripathi S. 2005. An electrogenic V-H+-ATPase drives electrolyte transport in the isolated perfused larval Drosophila midgut. J. Physiol. 565P: C3Google Scholar
  22. Terra W.R., Ferriera C., Baker J.E. 1996. Compartmentalization of digestion. In: M.J. Lehane, P.F. Billingsley, editors, Biology of the Insect Midgut. Chapman and Hall, London, pp. 226–235Google Scholar
  23. Tripathi S., Morgunov N., Boulpaep E.L. 1985. Submicron tip breakage and silanization control improve ion-selective microelectrodes. Am. J. Physiol. 249:C514–C521PubMedGoogle Scholar
  24. Tripathi S., Boulpaep E.L., Maunsbach A.B. 1987. Isolated perfused Ambystoma proximal tubule: hydrodynamics modulates ultrastructure. Am. J. Physiol. 252:F1129–F1147PubMedGoogle Scholar
  25. Tripathi S., Boulpaep E.L. 1988. Cell membrane water permeabilities and streaming currents in Ambystoma proximal tubule. Am. J. Physiol. 255:F188–F203PubMedGoogle Scholar
  26. Wagner C.A., Finberg K.E., Breton S., Marshansky V., Brown D., Geibel J.P. 2004. Renal Vacuolar H+-ATPase. Am. J. Physiol 84:1263–1314Google Scholar
  27. Zhuang Z., Linser P.J., Harvey W.R. 1999. Antibody to H+V-ATPase subunit E colocalizes with portasomes in alkaline larval midgut of a freshwater mosquito (Aedes aegypti L.). J. Exp. Biol. 202:2449–2460PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Tata Institute of Fundamental ResearchMumbaiIndia

Personalised recommendations