The Journal of Membrane Biology

, Volume 204, Issue 3, pp 137–144 | Cite as

Gap Junction Coupling and Apoptosis in GFSHR-17 Granulosa Cells

  • A. NgezahayoEmail author
  • B. Altmann
  • M. Steffens
  • H.-A. Kolb


Recently, we found that intracellular washout of cGMP induces gap junction uncoupling and proposed a link between gap junction uncoupling and stimulation of apoptotic reactions in GFSHR-17 granulosa cells. In the present report we show that an inhibitor of guanylyl cyclase, ODQ, reduces gap junction coupling and promotes apoptotic reactions such as chromatin condensation and DNA strand breaks. To analyze whether gap junction uncoupling and induction of apoptotic reactions are related, the cells were treated with heptanol and 18β-GA, two known gap junction uncouplers. Gap junction coupling of GFSHR-17 cells could be restored if the incubation time with the gap junction uncouplers was less than 10 min. A prolonged incubation time irreversibly suppressed gap junction coupling and caused chromatin condensation as well as DNA degradation. The promotion of apoptotic reactions by heptanol or 18β-GA was not observed in cells with low gap junction coupling like HeLa cells, indicating that the observed genotoxic reactions are not caused by unspecific effects of gap junction uncouplers. Additionally, it was observed that heptanol or 18β-GA did not induce a sustained rise of [Ca2+]i. The effects of gap junction uncouplers could not be suppressed by the presence of 8-Br-cGMP. It is discussed that irreversible gap junction uncoupling can be mediated by cGMP-dependent as well as cGMP-independent pathways and in turn could lead to stimulation of apoptotic reactions in granulosa cells.


Granulosa cells cGMP Gap junction Apoptosis Chromatin condensation DNA strand breaks 



The authors thank Dr. B. Sommersberg, Dr. A. Mayerhofer (Anatomisches Institut, Technische Universität München, Germany) and Dr. A. Amsterdam (Weizman Institute Rehovot, Israel) for providing the GFSHR-17 cell line. The work was partly supported by a grant from the Fritz Thyssen-Stiftung.


  1. Ackert C.L., Gittens J.E.I., O’Brien M.J., Eppig J.J., Kidder G.M. 2001. Intercellular communication via connexin43 gap junctions is required for ovarian folliculogenesis in the mouse. Dev. Biol. 233:248–270CrossRefGoogle Scholar
  2. Barsacchi R., Perrotta C., Sestili P., Cantoni O., Moncada S., Clementi. E. 2002. Cyclic GMP-dependent inhibition of acid sphingomyelinase by nitric oxide: an early step in protection against apoptosis. Cell Death Differ. 9:1248–1255CrossRefPubMedGoogle Scholar
  3. Breidert S., Jacob R., Ngezahayo A., Kolb H.A., Naim H.Y. 2005. Trafficking pathways of C×49-GFP in living mammalian cells. Biol. Chem. 386:155–160CrossRefPubMedGoogle Scholar
  4. Bruzzone R., White T.W., Paul D.L. 1996. Connections with connexins: the molecular basis of direct intercellular signalling. Eur. J. Biochem. 238:1–27CrossRefPubMedGoogle Scholar
  5. Bruzzone S., Guida L., Zocchi E., Franco L., De Flora A. 2001. Connexin 43 hemi channels mediate Ca2+-regulated transmembrane NAD+ fluxes in intact cells. FASEB J. 15:10–15PubMedGoogle Scholar
  6. Chiarugi A., Moskowitz M.A. 2002. PARP-1-a Perpeti-ator of Apoptotic Cell Death? Science 297:200–2001CrossRefPubMedGoogle Scholar
  7. Elfgang C., Eckert R., Lichtenberg-Frate H., Butterweck A., Traub O., Klein R.A., Hulser D.F., Willecke K. 1995. Specific permeability and selective formation of gap junction channels in connexin-transfected HeLa cells. J. Cell. Biol. 129: 805–817CrossRefPubMedGoogle Scholar
  8. Enders O., Ngezahayo A., Wiechmann M., Leisten F., Kolb H.A. 2004. Structural calorimetry of main transition of supported DMPC bilayers by temperature controlled AFM. Biophys. J. 87:2522–2531CrossRefPubMedGoogle Scholar
  9. Fiscus R.R. 2002 Involvement of cyclic GMP and protein kinase G in the regulation of apoptosis and survival in neural cells. Neurosignals 11:175–190CrossRefPubMedGoogle Scholar
  10. Goodenough D.A., Goliger J.A., Paul D.L. 1996 Connexins, connexons and intercellular communication. Annu. Rev. Biochem. 65:475–502CrossRefPubMedGoogle Scholar
  11. Gottlieb R.A. 2000. Mitochondria: execution central. FEES Lett. 482:6–12CrossRefPubMedGoogle Scholar
  12. Harris A.L. 2001. Emerging issues of connexin channels: biophysics fills the gap. Quer. Rev. Biophys. 34:325–472Google Scholar
  13. Ivancsits S., Diem E., Pilger A., Rüdiger H.W., Jahn O. 2002. Induction of DNA-strand breaks by intermittent exposure to extremely-low-frequency electromagnetic fields in human diploid fibroblasts. Mut. Res. 519:1–13Google Scholar
  14. Johnson AL 2003 Intracellular mechanisms regulating cell survival in ovarian follicles. Anim. Reprod. Sci. 78:185–201CrossRefPubMedGoogle Scholar
  15. Keren T.I., Dantes A., Sprengel R., Amsterdam A. 1993. Establishment of steroidegenic granulesa cell lines expressing follicle stimulating hormone receptors. Mol. Cell Endocrinol. 95:R1–R10CrossRefPubMedGoogle Scholar
  16. Kwak B.R., Hermans M.M., De Jonge H.R., Lohmann S.M., Jongsma H.J., Chanson M. 1995. Differential regulation of distinct types of gap junction channels by similar phosphorylating conditions. Mol. Biol. Cell 6:1707–1719PubMedGoogle Scholar
  17. Lipton S.A., Bossy-Wetzel E. 2002. Dueling activities of AIF in cell death versus survival: DNA binding and redox activity. Cell 111:147–150CrossRefPubMedGoogle Scholar
  18. Nakase T., Fushiki S., Naus C.C. 2003. Astrocytic gap junctions composed of connexin 43 reduce apoptotic neuronal damage in cerebral ischemia. Stroke 34:1987–1993CrossRefPubMedGoogle Scholar
  19. Ngezahayo A., Altmann B., Kolb H.A. 2003 Regulation of gap junctional coupling, ion fluxes and cell volume by cGMP in GFSHR-17 granulosa cells. J. Membr. Biol. 194:165–176CrossRefPubMedGoogle Scholar
  20. Okuma A., Kuraoka A., Iida H., Inai T., Wasano K., Shibata Y. 1996. Colocalization of connexin 43 and connexin 45 but absence of connexin 40 in granulosa cell gap junctions of rat ovary. J. Reprod. Pert. 107: 255–264Google Scholar
  21. Peluso J.J. 2003. Progesterone as a regulator of granulosa cell viability. J. Steroid Biochem. Mol. Biol. 85:167–173CrossRefPubMedGoogle Scholar
  22. Perez G.I., Maravei D.V., Trbovich A.M., Cidlowski J.A., Tilly J.L., Hughes Jr. P.M. 2000 Identification of potassium-dependent and -independent components of apoptotic machinery in mouse ovarian germ cells and granulosa cells. Biol. Reprod. 63:13358–13369Google Scholar
  23. Peter M.E., Krammer P.H. 2003 The CD95(APO-I/Fas) DISC and beyond. Cell. Death Differ. 10:26–35CrossRefPubMedGoogle Scholar
  24. Quirk S.M., Harman R.M., Cowan R.G. (2000) Regulation of Fas antigen (Fas, CD95)-mediated apoptosis of bovine granulosa cells by serum and growth factors. Biol. Reprod. 63:1278–1284PubMedGoogle Scholar
  25. Robe P.A., Princen F., Martin D., Malgrange B., Stevenaert A., Moonen G., Gielen J., Merville M., Bours V. 2000. Pharmacological modulation of the bystander effect in the herpes simplex virus thymidine kinase/ganciclovir gene therapy system: effects of dibutyryl adenosine 3′,5′-cyclic monophosphate, alpha-glycyrrhetinic acid, and cytosine arabinoside. Biochem. Pharmacol. 60:241–249CrossRefPubMedGoogle Scholar
  26. Robe P.A., Nguyen-Khac M.T., Jolois O., Register B., Merville M.P., Bours V. 2005. Dexamethasone inhibits the HSV-tk/ ganciclovir bystander effect in malignant glioma cells. BMC Cancer 5:32 doi:10.1186/1471-2407-5-32CrossRefPubMedGoogle Scholar
  27. Sasson R., Amsterdam A. 2003. Pleiotropic anti-apoptotic activity of glucocorticoids in ovarian follicular cells. Biochem. Pharmacol. 66:1393–401CrossRefPubMedGoogle Scholar
  28. Schreiber J.R., Beckmann M.W., Polacek D., Davis P.F. 1993. Changes in gap junction connexin-43 messenger ribonucleic acid levels associated with rat follicular development as demonstrated by in situ hybridisation. Am. J. Obestet. Gynecol. 168:1094–2204Google Scholar
  29. Sommersberg B., Bulling A., Salzer U., Frohlich U., Garfield R.E., Amsterdam A., Mayerhofer A. 2000. Gap junction communication and connexin 43 gene expression in a rat granulosa cell line: regulation by follicle-stimulating hormone. Biol. Reprod. 63:1661–1668PubMedGoogle Scholar
  30. van Veen T.A., van Rijen H.V., Jongsma HJ. 2000. Electrical conductance of mouse connexin45 gap junction channels is modulated by phosphorylation. Cardiovasc. Res. 46:496–510CrossRefPubMedGoogle Scholar
  31. White T.W., Paul D.L. 1999. Genetic diseases and gene knockouts reveal diverse connexin functions. Annu. Rev. Physiol. 61:283–310CrossRefPubMedGoogle Scholar
  32. Wiesen J.F., Midgley R.A. 1994 Expression of connexin43 gap junction messenger ribonucleic acid and protein during follicular atresia. Biol. Reprod. 50:336–348PubMedGoogle Scholar
  33. Willecke K., Eiberger J., Degen J., Eckardt J.D, Romualdi A., Guldenagel M., Deutsch U., Sohl G. 2002. Structural and functional diversity of connexin genes in the mouse and human genome. Biol. Chem. 383:725–737CrossRefPubMedGoogle Scholar
  34. Wright C.S., Decker D.L., Lin J.S., Warner A.E., HardyK. 2001 Stage-specific and differential expression of gap junctions in the mouse ovary: connexin-specific roles in follicular regulation. Reproduction 121:77–88CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • A. Ngezahayo
    • 1
    Email author
  • B. Altmann
    • 1
  • M. Steffens
    • 1
  • H.-A. Kolb
    • 1
  1. 1.Institute of BiophysicsUniversity HannoverGermany

Personalised recommendations