The Journal of Membrane Biology

, Volume 203, Issue 3, pp 143–150 | Cite as

Functional Interaction Between CFTR and Cx45 Gap Junction Channels Expressed in Oocytes

Article

Abstract

The cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride (Cl) channel known to influence the function of other channels, including connexin channels. To further study potential functional interactions between CFTR and gap junction channels, we have co-expressed CFTR and connexin45 (Cx45) in Xenopus oocytes and monitored junctional conductance and voltage sensitivity by dual voltage clamp electrophysiology. In single oocytes expressing CFTR, an increase in cAMP caused by forskolin application induced a Cl current and increased membrane conductance; application of diphenylamine carboxylic acid (CFTR blocker) readily blocked the Cl current. With co-expression of CFTR and Cx45, application of forskolin to paired oocytes induced a typical outward current and increased junctional conductance (Gj). In addition, the presence of CFTR reduced the transjunctional voltage sensitivity of Cx45 channels without affecting the kinetics of junctional current inactivation. The drop in voltage sensitivity was further enhanced by forskolin application. The data indicate that CFTR influences cell-to-cell coupling mediated by Cx45 channels.

Keywords

Chloride channels CFTR Cell communication Connexins Gap junctions Channel gating Xenopus oocytes 

References

  1. Barrio, L.C., Suchyna, T., Bargiello, T., Xu, L.X., Roginski, R.S., Bennett, M.V.L., Nicholson, B.J. 1991Gap junctions formed by connexins 26 and 32 alone and in combination are differently affected by applied voltageProc. Natl. Acad. Sci. USA8884108414Google Scholar
  2. Bear, C.E., Duguay, F., Naismith, A.L., Kartner, N., Hanrahan, J.W., Riordan, J.R. 1991Cl channel activity in Xenopus oocytes expressing the cystic fibrosis geneJ Biol. Chem.2681914219145Google Scholar
  3. Bukauskas, F.F., Bukauskiene, A., Verselis, V.K., Bennett, M.V.L. 2002Coupling asymmetry of heterotypic connexin 45/connexin 43-EGFP gap junctions: Properties of fast and slow gating mechanismsProc. Natl. Acad. Sci. USA9971137118Google Scholar
  4. Bukauskas, F.F., Peracchia, C. 1997Two distinct gating mechanisms in gap junction channels: CO2-sensitive and voltage-sensitiveBiophys. J.7221372142Google Scholar
  5. Chanson, M., Scerri, I., Suter, S. 1999Defective regulation of gap junction coupling in cystic fibrosis pancreatic duct cellsJ. Clin. Invest.10316771684Google Scholar
  6. Cheng, J., Guggino, W.B. 1998Molecular cloning and characterization of a novel PDZ domain containing protein that interact with CFTRPediatr. Pulmonol.26213Google Scholar
  7. Cheng, J., Wang, H., Guggino, W.B. 2004Modulation of mature cystic fibrosis transmembrane regulator protein by the PDZ domain protein CALJ. Biol. Chem.27918921898Google Scholar
  8. Cunningham, S.A., Worrell, R.T., Benos, D.J., Frizzell, R.A. 1992cAMP-stimulated ion currents in Xenopus oocytes expressing CFTR cRNAAm. J. Physiol.262C783C788Google Scholar
  9. DiStefano, A., Wittner, M., Schlatter, E., Lang, H., Englert, H., Greger, R. 1985Diphenylamine-2-carboxylate, a blocker of the Cl–conductive pathway in Cl transporting epitheliaPfluegers Arch.405S95S100Google Scholar
  10. Drumm, M.L., Wilkinson, D.J., Smit, L.S., Worrell, R.T., Strong, T.V., Frizzell, R.A., Dawson, D.C., Collins, F.S. 1991Chloride conductance expressed by delta F508 and other CFTRs in Xenopus oocytesScience25417971799Google Scholar
  11. Elenes, S., Martinez, A.D., Delmar, M., Beyer, E.G., Moreno, A.P. 2001Heterotypic docking of Cx43 and Cx45 connexons blocks fast voltage gating of Cx43Biophys. J.8114061418Google Scholar
  12. Gadsby, D., Nairn, A.C. 1999Control of CFTR channel gating by phosphorylation and nucleotide hydrolysisPhysiol. Rev.7977107Google Scholar
  13. Greger, R., Schreiber, R., Mall, M., Wissner, A., Hopf, A., Briel, M., Bleich, M., Warth, R., Kunzelmann, K. 2001Cystic fibrosis and CFTRPfluegers Arch.443S3S7Google Scholar
  14. Haggie, P.M., Stanton, B.A., Verkman, A.S. 2004Increased diffusional mobility of CFTR at the plasma membrane after deletion of its C-terminal PDZ binding motifJ. Biol. Chem.27954945500Google Scholar
  15. Harris, A.L. 2001Emerging issues of connexin channels: Biophysics fills the gapQuart. Rev. Biophys.34325472Google Scholar
  16. Kausalya, PJ., Reichert, M., Hunziker, W. 2001Connexin45 directly binds to ZO-1 and localizes to the tight junction region in epithelial MDCK cellsFEES Lett.5059296Google Scholar
  17. Kunzelmann, K. 2001CFTR: interacting with everything? News Physiol Sci.16167170Google Scholar
  18. Laing, J.G., Manley-Markowski, R.N., Koval, M., Civitelli, R., Steinberg, T.H. 2001Connexin45 interacts with zonula occludens-1 in osteoblastic cellsCell. Comm. Adhes.8208212Google Scholar
  19. Lazrak, A., Peracchia, C. 1993Gap junction gating sensitivity to physiological internal calcium regardless of pH in Novikoff hepatoma cellsBiophys. J.6520022012Google Scholar
  20. Peracchia, C. 1990aIncrease in gap junction resistance with acidification in crayfish septate axons is closely related to changes in intracellular calcium but not hydrogen ion concentrationJ. Membrane Biol.1137592Google Scholar
  21. Peracchia, C. 1990bEffects of caffeine and ryanodine on low pHi-induced changes in gap junction conductance and calcium concentration in crayfish septate axonsJ. Membrane Biol.1177989Google Scholar
  22. Peracchia, C. 2004. Chemical gating of gap junction channels. Roles of calcium, pH and calmodulin. In: The Connexins. J.C. Hervé, editor Biochim. Biophys. Acta (Biomembranes) 1662:61–80Google Scholar
  23. Peracchia, C., Wang, X., Li, L., Peracchia, L.L. 1996Inhibition of calmodulin expression prevents low-pH-induced gap junction uncoupling in Xenopus oocytesPfluegers Arch.431379387Google Scholar
  24. Peracchia, C., Wang, X.G., Peracchia, L.L. 1999Is the chemical gate of connexins voltage sensitive? Behavior of Cx32 wild-type and mutant channelsAm. J. Physiol.276C1361C13731999Google Scholar
  25. Peracchia, C., Wang, X.G., Peracchia, L.L. 2000Slow gating of gap junction channels and calmodulinJ. Membrane Biol.785570Google Scholar
  26. Peracchia, C., Young, K.C., Wang, X.G., Peracchia, L.L. 2003Is the voltage gate of connexins CO2-sensitive? Cx45 channels and inhibition of calmodulin expressionJ. Membrane Biol.1955362Google Scholar
  27. Reczek, D., Berryman, M., Bretscher, A. 1997Identification of EBP50: a PDZ-containing phosphoprotein that associates with members of the ezrin-radixin-moesin familyJ. Cell. Biol.139169179Google Scholar
  28. Reddy, M.M., Quinton, P.M. 2002Effect of anion transport blockers on CFTR in human sweat duct JMembrane Biol.1891525Google Scholar
  29. Schultz, B.D., Singh, A.K., Devor, D.C., Bridges, R.J. 1999Pharmacology of CFTR chloride channel activityPhysiol. Rev.79S109S144Google Scholar
  30. Schwiebert, E.M., Egan, M.E., Hwang, T.H., Fulmer, S.B., Alien, S.S., Cutting, G.R., Guggino, W.B. 1995CFTR regulates outwardly rectifying chloride channels through an autocrine mechanism involving ATPCell8110631073Google Scholar
  31. Sheppard, D.N., Welsh, M.J. 1999Structure and function of the CFTR chloride channelPhysiol. Rev.79S23S45Google Scholar
  32. Spray, D.C., Harris, A.L., Bennett, M.V.L. 1981Equilibrium properties of a voltage-dependent junctional conductanceJ. Gen. Physiol.777793Google Scholar
  33. Stutts, M.J., Canessa, C.M., Olsen, J.C., Hamrick, M., Cohn, J.A., Rossier, B.C., Boucher, R.C. 1995CFTR as a cAMP-dependent regulator of sodium channelsScience269847850Google Scholar
  34. Sugita, M., Yue, Y., Foskett, J.K. 1998CFTR Cl channel and CFTR-associated ATP channel: distinct pores regulated by common gatesEMBO J.17898908Google Scholar
  35. Wang, S., Li, M. 2001Molecular studies of CFTR interacting proteinsPfluegers Arch.443S62S64Google Scholar
  36. Wang, S., Yue, H., Derin, R.B., Guggino, W.B., Li, M. 2000Accessory protein facilitated CFTR-CFTR interaction, a molecular mechanism to potentiate the chloride channel activityCell103169179Google Scholar
  37. Yoo, D., Olsen, O., Raghuram, V., Foskett, J.K., Welling, P.A. 2004Assembly and trafficking of a multiprotein ROMK (Kir 1.1) chan- nel complex by PDZ interactionsJ. Biol Chem.27968636873Google Scholar
  38. Zhang, Z.R., Zeltwanger, S., McCarty, N.A. 2000Direct comparison of NPPB and DPC as probes of CFTR expressed in Xenopus oocytesJ. Membrane Biol.1753552Google Scholar

Copyright information

© Springer Science+Business Media Inc. 2005

Authors and Affiliations

  1. 1.Department of Pharmacology and PhysiologyUniversity of Rochester School of MedicineRochesterUSA
  2. 2.Instituto de Investigaciones Medicas, Alfredo LanariUniversidad de Buenos Aires, Laboratorio de NeurofisiologiaBuenos AiresArgentina

Personalised recommendations