The Journal of Membrane Biology

, Volume 201, Issue 1, pp 1–8

Interactions of Local Anesthetics with Voltage-gated Na+ Channels

Topical Review

Abstract

Voltage-gated Na+ channels are dynamic transmembrane proteins responsible for the rising phase of the action potential in excitable membranes. Local anesthetics (LAs) and structurally related antiarrhythmic and anticonvulsant compounds target specific sites in voltage-gated Na+ channels to block Na+ currents, thus reducing excitability in neuronal, cardiac, or central nervous tissue. A high-affinity LA block is produced by binding to open and inactivated states of Na+ channels rather than to resting states and suggests a binding site that converts from a low- to a high-affinity conformation during gating. Recent findings using site-directed mutagenesis suggest that multiple S6 segments together form an LA binding site within the Na+ channel. While the selectivity filter may form the more extracellular-located part of this binding site, the role of the fast inactivation gate in LA binding has not yet been resolved. The receptor of the neurotoxin batrachotoxin (BTX) is adjacent to or even overlaps with the LA binding site. The close proximity of the LA and BTX binding sites to residues critical for inactivation, together with gating transitions through S6 segments, might explain the strong impact of LAs and BTX on inactivation of voltage-gated Na+ channels and might help elucidate the mechanisms underlying voltage- and frequency-dependent LA block.

References

  1. Aldrich, R.W., Corey, D.P., Stevens, C.F. 1983A reinterpretation of mammalian sodium channel gating based on single channel recordingNature306436441CrossRefPubMedGoogle Scholar
  2. An, R.H., Bangalore, R., Rosero, S.Z., Kass, R.S. 1996Lidocaine block of LQT-3 mutant human Na+ channelsCirc. Res.79103108PubMedGoogle Scholar
  3. Balser, J.R., Nuss, H.B., Orias, D.W., Johns, D.C., Marban, E., Tomaselli, G.F., Lawrence, J.H. 1996Local anesthetics as effectors of allosteric gating. Lidocaine effects on inactivation-deficient rat skeletal muscle Na channelsJ. Clin. Invest.9828742886PubMedGoogle Scholar
  4. Benitah, J.P., Chen, Z., Balser, J.R., Tomaselli, G.F., Marban, E. 1999Molecular dynamics of the sodium channel pore vary with gating: interactions between P-segment motions and inactivationJ. Neurosci.1915771585PubMedGoogle Scholar
  5. Bennett, P.B., Valenzuela, C., Chen, L.Q., Kallen, R.G. 1995On the molecular nature of the lidocaine receptor of cardiac Na+ channels. Modification of block by alterations in the alpha-subunit III-IV interdomainCirc. Res.77584592PubMedGoogle Scholar
  6. Catterall, W.A. 1980Neurotoxins that act on voltage-sensitive sodium channels in excitable membranesAnnu. Rev. Pharmacol. Toxicol.201543CrossRefPubMedGoogle Scholar
  7. Catterall, W.A. 2000From ionic currents to molecular mechanisms: the structure and function of voltage-gated sodium channelsNeuron261325CrossRefPubMedGoogle Scholar
  8. Catterall, W.A., Beneski, D.A. 1980Interaction of polypeptide neurotoxins with a receptor site associated with voltage-sensitive sodium channelsJ. Supramol. Struct.14295303CrossRefPubMedGoogle Scholar
  9. Catterall, W.A., Goldin, A.L., Waxman, S.G. 2003International Union of Pharmacology. XXXIX. Compendium of voltage-gated ion channels: sodium channelsPharmacol. Rev.55575578CrossRefPubMedGoogle Scholar
  10. Cha, A., Ruben, P.C., George, A.L.,Jr., Fujimoto, E., Bezanilla, F. 1999Voltage sensors in domains III and IV, but not I and II, are immobilized by Na+ channel fast inactivationNeuron227387CrossRefPubMedGoogle Scholar
  11. Chen, J., Seebohm, G., Sanguinetti, M.C. 2002Position of aromatic residues in the S6 domain, not inactivation, dictates cisapride sensitivity of HERG and eag potassium channelsProc. Natl. Acad. Sci. USA991246112466CrossRefPubMedGoogle Scholar
  12. Daly, J.W., Myers, C.W., Warnick, J.E., Albuquerque, E.X. 1980Levels of batrachotoxin and lack of sensitivity to its action in poison-dart frogs (Phyllobates)Science20813831385PubMedGoogle Scholar
  13. Eaholtz, G., Scheuer, T., Catterall, W.A. 1994Restoration of inactivation and block of open sodium channels by an inactivation gate peptideNeuron1210411048CrossRefPubMedGoogle Scholar
  14. Grant, A.O., Chandra, R., Keller, C., Carboni, M., Starmer, C.F. 2000Block of wild-type and inactivation-deficient cardiac sodium channels IFM/QQQ stably expressed in mammalian cellsBiophys. J.7930193035PubMedGoogle Scholar
  15. Grant, A.O., John, J.E., Nesterenko, V.V., Starmer, C.F., Moorman, J.R. 1996The role of inactivation in open-channel block of the sodium channel: studies with inactivation-deficient mutant channelsMol. Pharmacol.5016431650PubMedGoogle Scholar
  16. Hille, B. 1977Local anesthetics: hydrophilic and hydrophobic pathways for the drug-receptor reactionJ. Gen. Physiol.69497515CrossRefPubMedGoogle Scholar
  17. Hille, B. 2001Ionic Channels of Excitable MembranesSinauer Associates, Inc.Sunderland, MAGoogle Scholar
  18. Hockerman, G.H., Peterson, B.Z., Sharp, E., Tanada, T.N., Scheuer, T., Catterall, W.A. 1997Construction of a high-affinity receptor site for dihydropyridine agonists and antagonists by single amino acid substitutions in a non-L-type Ca2+ channelProc. Natl. Acad. Sci. USA941490614911CrossRefPubMedGoogle Scholar
  19. Hodgkin, A.L., Huxley, A.F. 1952A quantitative description of membrane current and its application to conduction and excitation in nerveJ. Physiol.117500544PubMedGoogle Scholar
  20. Hollmann, M.W., McIntire, W.E., Garrison, J.C., Durieux, M.E. 2002Inhibition of mammalian Gq protein function by local anestheticsAnesthesiology9714511457CrossRefPubMedGoogle Scholar
  21. Hondeghem, L.M., Katzung, B.G. 1977Time- and voltage-dependent interactions of antiarrhythmic drugs with cardiac sodium channelsBiochim. Biophys. Acta472373398PubMedGoogle Scholar
  22. Huang, C.J., Favre, I., Moczydlowski, E. 2000Permeation of large tetra-alkylammonium cations through mutant and wild- type voltage-gated sodium channels as revealed by relief of block at high voltageJ. Gen. Physiol.115435454CrossRefPubMedGoogle Scholar
  23. Jiang, Y., Lee, A., Chen, J., Cadene, M., Chait, B.T., MacKinnon, R. 2002The open pore conformation of potassium channelsNature417523526PubMedGoogle Scholar
  24. Kambouris, N.G., Nuss, H.B., Johns, D.C., Marban, E., Tomaselli, G.F., Balser, J.R. 2000A revised view of cardiac sodium channel “blockade” in the long-QT syndromeJ. Clin. Invest.10511331140PubMedGoogle Scholar
  25. Koller, K. 1884Vorläufige Mitteilung über lokale Anasthesierung am AugeKlin. Mbl. Augenheilk.2260Google Scholar
  26. Kondratiev, A., Tomaselli, G.F. 2003Altered gating and local anesthetic block mediated by residues in the I-S6 and II-S6 transmembrane segments of voltage-dependent Na+ channelsMol. Pharmacol.64741752CrossRefPubMedGoogle Scholar
  27. Kontis, K.J., Rounaghi, A., Goldin, A.L. 1997Sodium channel activation gating is affected by substitutions of voltage sensor positive charges in all four domainsJ. Gen. Physiol.110391401CrossRefPubMedGoogle Scholar
  28. Li, H.L., Galue, A., Meadows, L., Ragsdale, D.S. 1999A molecular basis for the different local anesthetic affinities of resting versus open and inactivated states of the sodium channelMol. Pharmacol.55134141PubMedGoogle Scholar
  29. Linford, N.J., Cantrell, A.R., Qu, Y., Scheuer, T., Catterall, W.A. 1998Interaction of batrachotoxin with the local anesthetic receptor site in transmembrane segment IVS6 of the voltage-gated sodium channelProc. Natl. Acad. Sci. USA951394713952CrossRefPubMedGoogle Scholar
  30. Lofgren, N. 1948. Studies on local anesthetics. Xylocaine, a new synthetic drug. In: Faculty of Mathematics and Natural Sciences. University of Stockholm, Ivar Haeggstroms boktryckeri A.B., Stockholm, SwedenGoogle Scholar
  31. McCollum, I.J., Vilin, Y.Y., Spackman, E., Fujimoto, E., Ruben, P.C. 2003Negatively charged residues adjacent to IFM motif in the DIII-DIV linker of hNa(V)1.4 differentially affect slow inactivationFEBS Lett.552163169CrossRefPubMedGoogle Scholar
  32. McPhee, J.C., Ragsdale, D.S., Scheuer, T., Catterall, W.A. 1994A mutation in segment IVS6 disrupts fast inactivation of sodium channelsProc. Natl. Acad. Sci. USA911234612350PubMedGoogle Scholar
  33. McPhee, J.C., Ragsdale, D.S., Scheuer, T., Catterall, W.A. 1995A critical role for transmembrane segment IVS6 of the sodium channel alpha subunit in fast inactivationJ. Biol. Chem.2701202512034CrossRefPubMedGoogle Scholar
  34. McPhee, J.C., Ragsdale, D.S., Scheuer, T., Catterall, W.A. 1998A critical role for the S4-S5 intracellular loop in domain IV of the sodium channel alpha-subunit in fast inactivationJ. Biol. Chem.27311211129CrossRefPubMedGoogle Scholar
  35. Mitrovic, N., George, A.L.,Jr., Horn, R. 2000Role of domain 4 in sodium channel slow inactivationJ. Gen. Physiol.115707718CrossRefPubMedGoogle Scholar
  36. Nau, C., Wang, S.Y., Strichartz, G.R., Wang, G.K. 1999Point mutations at N434 in D1-S6 of mul Na+ channels modulate binding affinity and stereoselectivity of local anesthetic enantiomersMol. Pharmacol.56404413PubMedGoogle Scholar
  37. Nau, C., Wang, S.Y., Wang, G.K. 2003Point mutations at L1280 in Nav1.4 channel D3-S6 modulate binding affinity and stereoselectivity of bupivacaine enantiomersMol. Pharmacol.6313981406CrossRefPubMedGoogle Scholar
  38. Neher, E., Steinbach, J.H. 1978Local anaesthetics transiently block currents through single acetylcholine-receptor channelsJ. Physiol.277153176PubMedGoogle Scholar
  39. Ong, B.H., Tomaselli, G.F., Balser, J.R. 2000A structural rearrangement in the sodium channel pore linked to slow inactivation and use dependenceJ. Gen. Physiol.116653662CrossRefPubMedGoogle Scholar
  40. O’Reilly, J.P., Wang, S.Y., Wang, G.K. 2000A point mutation in domain 4-segment 6 of the skeletal muscle sodium channel produces an atypical inactivation stateBiophys. J.78773784PubMedGoogle Scholar
  41. O’Reilly, J.P., Wang, S.Y., Wang, G.K. 2001Residue-specific effects on slow inactivation at V787 in D2-S6 of Nav1.4 sodium channelsBiophys. J.8121002111PubMedGoogle Scholar
  42. Perozo, E., Cortes, D.M., Cuello, L.G. 1999Structural rearrangements underlying K+-channel activation gatingScience2857378CrossRefPubMedGoogle Scholar
  43. Ragsdale, D.S., McPhee, J.C., Scheuer, T., Catterall, W.A. 1994Molecular determinants of state-dependent block of Na+ channels by local anestheticsScience26517241728PubMedGoogle Scholar
  44. Sheets, M.F., Kyle, J.W., Kallen, R.G., Hanck, D.A. 1999The Na channel voltage sensor associated with inactivation is localized to the external charged residues of domain IV, S4Biophys. J.77747757PubMedGoogle Scholar
  45. Smith, M.R., Goldin, A.L. 1997Interaction between the sodium channel inactivation linker and domain III S4-S5Biophys. J.7318851895PubMedGoogle Scholar
  46. Starmer, C.F., Grant, A.O., Strauss, H.C. 1984Mechanisms of use-dependent block of sodium channels in excitable membranes by local anestheticsBiophys. J.461527PubMedGoogle Scholar
  47. Stuhmer, W., Conti, F., Suzuki, H., Wang, X.D., Noda, M., Yahagi, N., Kubo, H., Numa, S. 1989Structural parts involved in activation and inactivation of the sodium channelNature339597603CrossRefPubMedGoogle Scholar
  48. Sunami, A., Dudley, S.C.,Jr., Fozzard, H.A. 1997Sodium channel selectivity filter regulates antiarrhythmic drug bindingProc. Natl. Acad. Sci. USA941412614131CrossRefPubMedGoogle Scholar
  49. Valenzuela, C., Delpon, E., Tamkun, M.M., Tamargo, J., Snyders, D.J. 1995Stereoselective block of a human cardiac potassium channel (Kv1.5) by bupivacaine enantiomersBiophys. J.69418427PubMedGoogle Scholar
  50. Vassilev, P.M., Scheuer, T., Catterall, W.A. 1988Identification of an intracellular peptide segment involved in sodium channel inactivationScience24116581661PubMedGoogle Scholar
  51. Vedantham, V., Cannon, S.C. 1999The position of the fast-inactivation gate during lidocaine block of voltage-gated Na+ channelsJ. Gen. Physiol.113716CrossRefPubMedGoogle Scholar
  52. Vedantham, V., Cannon, S.C. 2000Rapid and slow voltage-dependent conformational changes in segment IVS6 of voltage-gated Na+ channelsBiophys. J.7829432958PubMedGoogle Scholar
  53. Vilin, Y.Y., Fujimoto, E., Ruben, P.C. 2001A single residue differentiates between human cardiac and skeletal muscle Na+ channel slow inactivationBiophys. J.8022212230PubMedGoogle Scholar
  54. Wang, D.W., Yazawa, K., Makita, N., George, A.L.,Jr., Bennett, P.B. 1997Pharmacological targeting of long QT mutant sodium channelsJ. Clin. Invest.9917141720PubMedGoogle Scholar
  55. Wang, G.K., Brodwick, M.S., Eaton, D.C., Strichartz, G.R. 1987Inhibition of sodium currents by local anesthetics in chloramine-T-treated squid axons. The role of channel activationJ. Gen. Physiol.89645667CrossRefPubMedGoogle Scholar
  56. Wang, G.K., Quan, C., Wang, S.Y. 1998Local anesthetic block of batrachotoxin-resistand muscle Na+ channelsMol. Pharmacol.54389396PubMedGoogle Scholar
  57. Wang, G.K., Russell, C., Wang, S.Y. 2003State-dependent block of wild-type and inactivation-deficient Na+ channels by flecainideJ. Gen. Physiol.122365374CrossRefPubMedGoogle Scholar
  58. Wang, G.K., Russell, C., Wang, S.Y. 2004Mexiletine block of wild-type and inactivation-deficient human skeletal muscle hNav1.4 Na+ channelsJ. Physiol.554621633CrossRefPubMedGoogle Scholar
  59. Wang, G.K., Wang, S.Y. 1992Altered stereoselectivity of cocaine and bupivacaine isomers in normal and batrachotoxin-modified Na+ channelsJ. Gen. Physiol.10010031020CrossRefPubMedGoogle Scholar
  60. Wang, S.Y., Barile, M., Wang, G.K. 2001Disparate role of Na+ channel D2-S6 residues in batrachotoxin and local anesthetic actionMol. Pharmacol.5911001107PubMedGoogle Scholar
  61. Wang, S.Y., Nau, C., Wang, G.K. 2000Residues in Na+ channel D3-S6 segment modulate both batrachotoxin and local anesthetic affinitiesBiophys. J.7913791387PubMedGoogle Scholar
  62. Wang, S.Y., Wang, G.K. 1997A mutation in segment I-S6 alters slow inactivation of sodium channelsBiophys. J.7216331640PubMedGoogle Scholar
  63. Wang, S.Y., Wang, G.K. 1998Point mutations in segment I-S6 render voltage-gated Na+ channels resistant to batrachotoxinProc. Natl. Acad. Sci. USA9526532658CrossRefPubMedGoogle Scholar
  64. Wang, S.Y., Wang, G.K. 1999Batrachotoxin-resistant Na+ channels derived from point mutations in transmembrane segment D4-S6Biophys. J.7631413149PubMedGoogle Scholar
  65. Wang, S.Y., Wang, G.K. 2003Voltage-gated sodium channels as primary targets of diverse lipid-soluble neurotoxinsCell Signal15151159CrossRefPubMedGoogle Scholar
  66. West, J.W., Patton, D.E., Scheuer, T., Wang, Y., Goldin, A.L., Catterall, W.A. 1992A cluster of hydrophobic amino acid residues required for fast Na+-channel inactivationProc. Natl. Acad. Sci. USA891091010914PubMedGoogle Scholar
  67. Wright, S.N., Wang, S.Y., Wang, G.K. 1998Lysine point mutations in Na+ channel D4-S6 reduce inactivated channel block by local anestheticsMol. Pharmacol.54733739PubMedGoogle Scholar
  68. Yang, N., George, A.L.,Jr., Horn, R. 1996Molecular basis of charge movement in voltage-gated sodium channelsNeuron16113122CrossRefPubMedGoogle Scholar
  69. Yang, N., Horn, R. 1995Evidence for voltage-dependent S4 movement in sodium channelsNeuron15213218CrossRefPubMedGoogle Scholar
  70. Yarov-Yarovoy, V., Brown, J., Sharp, E.M., Clare, J.J., Scheuer, T., Catterall, W.A. 2001Molecular determinants of voltage-dependent gating and binding of pore- blocking drugs in transmembrane segment IIIS6 of the Na+ channel alpha subunitJ. Biol. Chem.2762027CrossRefPubMedGoogle Scholar
  71. Yarov-Yarovoy, V., McPhee, J.C., Idsvoog, D., Pate, C., Scheuer, T., Catterall, W.A. 2002Role of amino acid residues in transmembrane segments IS6 and IIS6 of the Na+ channel alpha subunit in voltage-dependent gating and drug blockJ. Biol. Chem.2773539335401CrossRefPubMedGoogle Scholar
  72. Yu, F.H., Westenbroek, R.E., Silos-Santiago, I., McCormick, K.A., Lawson, D., Ge, P., Ferriera, H., Lilly, J., DiStefano, P.S., Catterall, W.A., Scheuer, T., Curtis, R. 2003Sodium channel beta4, a new disulfide-linked auxiliary subunit with similarity to beta2J. Neurosci.2375777585PubMedGoogle Scholar
  73. Zhou, M., Morais-Cabral, J.H., Mann, S., MacKinnon, R. 2001Potassium channel receptor site for the inactivation gate and quaternary amine inhibitorsNature411657661CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2004

Authors and Affiliations

  1. 1.Department of AnesthesiologyFriedrich-Alexander-University Erlangen-NurembergErlangenGermany
  2. 2.Department of AnesthesiaHarvard Medical School and Brigham and Women’s HospitalBostonUSA

Personalised recommendations