The Journal of Membrane Biology

, Volume 198, Issue 3, pp 177–192

Chloride Channel Function in the Yeast TRK-Potassium Transporters

  • T. Kuroda
  • H. Bihler
  • E. Bashi
  • C. L. Slayman
  • A. Rivetta
Article

Abstract

The TRK proteins—Trk1p and Trk2p— are the main agents responsible for “active” accumulation of potassium by the yeast Saccharomyces cerevisiae. In previous studies, inward currents measured through those proteins by whole-cell patch-clamping proved very unresponsive to changes of extracellular potassium concentration, although they did increase with extracellular proton concentration—qualitatively as expected for H+ coupling to K+ uptake. These puzzling observations have now been explored in greater detail, with the following major findings: a) the large inward TRK currents are not carried by influx of either K+ or H+, but rather by an efflux of chloride ions; b) with normal expression levels for Trk1p and Trk2p in potassium-replete cells, the inward TRK currents are contributed approximately half by Trk1p and half by Trk2p; but c) strain background strongly influences the absolute magnitude of these currents, which are nearly twice as large in W303-derived spheroplasts as in S288c-derived cells (same cell-size and identical recording conditions); d) incorporation of mutations that increase cell size (deletion of the Golgi calcium pump, Pmr1p) or that upregulate the TRK2 promoter, can further substantially increase the TRK currents; e) removal of intracellular chloride (e.g., replacement by sulfate or gluconate) reveals small inward currents that are K+-dependent and can be enhanced by K+ starvation; and f) finally, the latter currents display two saturating kinetic components, with preliminary estimates of K0.5 at 46 μM [K+]out and 6.8 mM [K+]out, and saturating fluxes of ∼5 mM/min and ∼10 mM/min (referred to intracellular water). These numbers are compatible with the normal K+-transport properties of Trk1p and Trk2p, respectively.

Keywords

Potassium transport TRK proteins Inward rectifier Chloride current Patch clamping Saccharomyces cerevisiae 

References

  1. 1.
    Aghajari, N., Feller, G., Gerday, C., Haser, R. 2002Structural basis of α-amylase activation by chlorideProtein Sci1114351441CrossRefPubMedGoogle Scholar
  2. 2.
    Anderson, J.A., Huprikar, S.S., Kochian, L.V., Lucas, W.J., Gaber, R.F. 1992Functional expression of a probable Arabidopsis thaliana potassium channel in Saccharomyces cerevisiaeProc. Natl. Acad. Sci. USA8937363740PubMedGoogle Scholar
  3. 3.
    Armstrong, A., Rothstein, W.McD., Rothstein, W.McD. 1964Discrimination between alkali metal cations by yeast. I. Effect of pH on uptakeJ. Gen. Physiol486171CrossRefPubMedGoogle Scholar
  4. 4.
    Armstrong, W.McD., Rothstein, A. 1967Discrimination between alkali metal cations by yeast. II. Cation interactions in transportJ. Gen. Physiol50967988CrossRefPubMedGoogle Scholar
  5. 5.
    Arriza, J.L., Ellasof, S., Kavanaugh, M.P., Amara, S.G. 1997Excitatory amino acid transporter 5, a retinal glutamate transporter coupled to a chloride conductanceProc. Natl. Acad. Sci. USA9441554160CrossRefPubMedGoogle Scholar
  6. 6.
    Artigas, P., Gadsby, D.C. 2003Na+/K+-pump ligands modulate gating of palytoxin-induced ion channelsProc. Natl. Acad. Sci. USA100501505CrossRefPubMedGoogle Scholar
  7. 7.
    Bakker, E. 1993a

    Cell K+ and K+ transport systems in prokaryotes

    Bakker, E.P eds. Alkali Cation Transport Systems in ProkaryotesCRC PressBoca Raton, FL205224
    Google Scholar
  8. 8.
    Bakker, E. 1993b

    Low-affinity K+ uptake systems

    Bakker, E.P eds. Alkali Cation Transport Systems in ProkaryotesCRC PressBoca Raton, FL254276
    Google Scholar
  9. 9.
    Bañuelos, A.A., Klein, R.D., Alexander-Bowman, S.J., Rodriguez-Navarro, A. 1995A potassium transporter of the yeast. Schwanniomyces occidentalis homologous to the Kup system of Escherichia coli has a high concentrative capacityEMBO J1430213027PubMedGoogle Scholar
  10. 10.
    Bertl, A., Bihler, H., Kettner, C., Slayman, C.L. 1998Electrophysiology in the eukaryotic model cellSaccharomyces cerevisiae Eur. J. Physiol4369991013CrossRefGoogle Scholar
  11. 11.
    Bertl, A., Ramos, J., Ludwig, J., Lichtenberg-Frate, H., Reid, J., Bihler, H., Calero, F., Martinez, P., Ljungdahl, P.O. 2003Characterization of potassium transport in wild-type and isogenic yeast strains carrying all combinations of trk1, trk2, and tok1 null mutationsMol. Microbiol47767780CrossRefPubMedGoogle Scholar
  12. 12.
    Bertl, A., Slayman, C.L. 1992Complex modulation of cation channels in the tonoplast and plasma membrane of Saccharomyces cerevisiae: Single-channel studiesJ. Exp. Biol172 271287PubMedGoogle Scholar
  13. 13.
    Bertl, A., Slayman, C.L., Gradmann, D. 1993Gating and conductance in an outward-rectifying K+ channel from the plasma membrane of Saccharomyces cerevisiaeJ. Membrane Biol132183199CrossRefGoogle Scholar
  14. 14.
    Bihler, H., Gaber, R.F., Slayman, C.L., Bertl, A. 1999The presumed potassium carrier Trk2p in Saccharomyces cerevisiae determines an H+-dependent, K+-independent currentFEBS Lett447115120CrossRefPubMedGoogle Scholar
  15. 15.
    Blatt, M.R., Rodriguez-Navarro, A., Slayman, C.L. 1987The potassium-proton symport in Neurospora: Kinetic control by pH and membrane potentialJ. Membrane Biol98169189CrossRefGoogle Scholar
  16. 16.
    Blatt, M.R., Slayman, C.L. 1983KCl leakage from microelectrodes and its impact on the membrane parameters of a non-excitable cellJ. Membrane Biol72223234CrossRefGoogle Scholar
  17. 17.
    Blaustein, M.Liberman, M eds. 1984Electrogenic Transport: Fundamental Principles and Physiological ImplicationsRaven PressNew YorkGoogle Scholar
  18. 18.
    Bossemeyer, D., Borchard, A., Dosch, D.C., Helmer, G.C., Epstein, W., Booth, I.R., Bakker, E.P. 1989K+-transport protein TrkA of Escherichia coli is a peripheral membrane protein that requires other trk gene products for attachment to the cytoplasmic membraneJ. Biol. Chem2641640316410PubMedGoogle Scholar
  19. 19.
    Coury, LA., McGeoch, J.E.M., Guidotti, G., Brodsky, J.L. 1999The yeast Saccharomyces cerevisiae does not sequester chloride but can express a functional mammalian chloride channelFEMS Microbiol. Lett179327332CrossRefPubMedGoogle Scholar
  20. 20.
    Davis-Kaplan, S.R., Askwith, C.C., Bengtzen, A.C., Radisky, D., Kaplan, J. 1998Chloride is an allosteric effector of copper assembly for the yeast multicopper oxidase Fet3p: an unexpected role for intracellular chloride channelsProc. Natl. Acad. Sci. USA951364113645CrossRefPubMedGoogle Scholar
  21. 21.
    Diatloff, E., Kumar, R., Schachtman, DP. 1998Site-directed mutagenesis reduces the Na+ affinity of HKT1, an Na+ energized high affinity K+ transporterFEBS Lett4323136CrossRefPubMedGoogle Scholar
  22. 22.
    Durell, S.R., Guy, H.R. 1999Structural models of the KtrB, TrkH, and Trk1,2 symporters, based on the crystal structure of the KcsA K+ channelBiophys. J77789807PubMedGoogle Scholar
  23. 23.
    Gaber, R.F., Styles, C.A., Fink, G.R. 1986TRK1 encodes a plasma membrane protein required for high-affinity potassium transport in Saccharomyces cerevisiae. MolCell. Biol828482859Google Scholar
  24. 24.
    Gassmann, W., Rubio, F., Schroeder, J.I. 1996Alkali cation selectivity of the wheat root high-affinity potassium transporter HKT1Plant J10869882CrossRefPubMedGoogle Scholar
  25. 25.
    Gaxiola, R.A., Yuan, D.S., Klausner, R.D., Fink, G.R. 1998The yeast CLC chloride channel functions in cation homeostasisProc. Natl. Acad. Sci. USA9540464050CrossRefPubMedGoogle Scholar
  26. 26.
    Goldstein, S.A.N., Price, L.A., Rosenthal, D.N., Pausch, M.H. 1996ORK1, a potassium-selective leak channel with two pore domains cloned from Drosophila melanogaster by expression in Saccharomyces cerevisiaeProc. Natl. Acad. Sci. USA93 1325613261CrossRefPubMedGoogle Scholar
  27. 27.
    Greene, J.R., Brown, N.H., DiDomenico, B.J., Kaplan, J., Eide, D.J. 1993The GEF1 gene of Saccharomyces cerevisiae encodes an integral membrane protein; mutations in which have effects on respiration and iron-limited growthMol. Gen. Genet241 542553CrossRefPubMedGoogle Scholar
  28. 28.
    Günther, W., Lüchow, A., Cluzeaud, F., Vandewalle, A., Jentsch, T.J. 1998CIC-5, the chloride channel mutated in Dent’s disease, colocalizes with the proton pump in endocytotically active kidney cellsProc. Natl. Acad. Sci. USA9580758080CrossRefPubMedGoogle Scholar
  29. 29.
    Gutknecht, J. 1992Aspirin, acetaminophen, and proton transport through phospholipid bilayers and mitochondrial membranesMol. Cell Biochem11438PubMedGoogle Scholar
  30. 30.
    Gutknecht, J., Tosteson, D.C. 1973Diffusion of weak acids across lipid bilayer membranes: effects of chemical reactions in the unstirred layersScience18212581261PubMedGoogle Scholar
  31. 31.
    Haro, R., Rodriguez-Navarro, A. 2002Molecular analysis of the mechanism of potassium uptake through the TRK1 transporter of Saccharomyces cerevisiaeBiochim. Biophys. Acta1564114122PubMedGoogle Scholar
  32. 32.
    Haro, R., Rodriguez-Navarro, A. 2003Functional analysis of the M2D helix of the TRK1 potassium transporter of Saccharomyces cerevisiaeBiochim. Biophys. Acta161316PubMedGoogle Scholar
  33. 33.
    Horie, T., Yoshida, I., Nakayama, H., Yamada, K., Oiki, S., Shinmyo, A. 2001Two types of HKT transporters with different properties of Na+ and K+ transport in Oryza sativaPlant J27129138CrossRefPubMedGoogle Scholar
  34. 34.
    Huang, M.-E., Chuat, J.-C., Galibert, F. 1994A voltage-gated chloride channel in the yeast Saccharomyces cerevisiaeJ. Mol. Biol242595598CrossRefPubMedGoogle Scholar
  35. 35.
    M.L. Jennings, J. Cui, 2003 Chloride transport and homeostasis in Saccharomyces cerevisiae. Abstr. 57th Meeting Soc Gen. Physiol (Woods Hole MA, Sept. 3-7), Item 113 InsertGoogle Scholar
  36. 36.
    Kato, Y., Sakaguchi, M., Mori, Y., Saito, K., Nakamura, T., Bakker, E.P., Sato, Y., Goshima, S., Uozumi, N. 2001Evidence in support of a four transmembrane-pore-transmembrane topology model for the Arabidopsis thaliana Na+ /K+ translocating AtHKT1 protein, a member of the superfamily of K+ transportersProc. Natl. Acad. Sci. USA9864886493 CrossRefPubMedGoogle Scholar
  37. 37.
    Ketchum, K.A., Joiner, W.J., Sellers, A.J., Kaczmarek, L.K., Goldstein, S.A.N. 1995A new family of outwardly rectifiying potassium channel proteins with two pore domains in tandemNature376690695CrossRefPubMedGoogle Scholar
  38. 38.
    Kettner, C., Bertl, A., Obermeyer, G., Slayman, C.L, Bihler, H. 2003Electrophysiological analysis of the yeast V-type proton pump: variable coupling ratio and proton shuntBiophys. J8537303738PubMedGoogle Scholar
  39. 39.
    Ko, C.H., Buckley, A.M., Gaber, R.F. 1990TRK2 is required for low affinity K+ transport in Saccharomyces cerevisiaeGenetics125305312PubMedGoogle Scholar
  40. 40.
    Läuger, P. 1991Electrogenic Ion PumpsSinauer Assoc.313 pp. Sunderland, MAGoogle Scholar
  41. 41.
    Lester, H.A., Cao, Y., Mager, S. 1996Listening to neurotransmitter transportersNeuron17807810CrossRefPubMedGoogle Scholar
  42. 42.
    Lin, F., Lester, H.A., Mager, S. 1996Singe-channel currents produced by the serotonin transporter and analysis of a mutation affecting ion permeationBiophys. J7131263135PubMedGoogle Scholar
  43. 43.
    Liu, W., Schachtman, D.P., Zhang, W. 2000Partial deletion of a loop region in the high affinity K+ transporter HKT1 changes ionic permeability leading to increased salt toleranceJ. Biol. Chem2752792427932PubMedGoogle Scholar
  44. 44.
    Locke, E.G., Bonilla, M., Liang, L., Takita, Y., Cunningham, K.W. 2000A homolog of voltage-gated Ca2+ channels stimulated by depletion of secretory Ca2+ in yeastMol. Cell. Biol2066866694CrossRefPubMedGoogle Scholar
  45. 45.
    Loukin, S.H., Saimi, Y. 1999K+-dependent composite gating of the yeast K+ channel, Tok1Biophys. J7730603070PubMedGoogle Scholar
  46. 46.
    Mäser, P., Hosoo, Y., Goshima, S., Horie, T., Eckelman, B., Yamada, K., Yoshida, K., Bakker, E.P., Shinmyo, A., Oiki, S., Schroeder, J.I., Uozumi, N. 2002Glycine residues in potassium channel-like selectivity filters determine potassium selectivity in four-loop-per-subunit HKT transporters from plantsProc. Natl. Acad. Sci. USA9964286433CrossRefPubMedGoogle Scholar
  47. 47.
    Minor, D.L., Masseling, S.J., Jan, Y.N., Jan, L.Y. 1999Transmembrane structure of an inwardly rectifying potassium channelCell96879891CrossRefPubMedGoogle Scholar
  48. 48.
    Ramos, J., Alijo, R., Haro, R., Rodriguez-Navarro, A. 1994TRK2 is not a low-affinity potassium transporter in Saccharomyces cerevisiaeJ. Bacteriol176249252PubMedGoogle Scholar
  49. 49.
    Rodriguez-Navarro, A., Blatt, M.R., Slayman, C.L. 1986A potassium-proton symport in Neurospora crassaJ. Gen. Physiol87649674CrossRefPubMedGoogle Scholar
  50. 50.
    Rodriguez-Navarro, A., Ramos, J. 1984Dual system for potassium transport in Saccharomyces cerevisiaeJ. Bacteriol159 940945PubMedGoogle Scholar
  51. 51.
    Röhm, K.-H. 1985Chloride as allosteric effector of yeast aminopeptidase IArch. Biochem. Biophys239216225CrossRefPubMedGoogle Scholar
  52. 52.
    Rubio, F., Gassmann, W., Schroeder, J.I. 1995Sodium-driven potassium uptake by the plant potassium transporter HKT1 and mutations conferring salt toleranceScience27016601663PubMedGoogle Scholar
  53. 53.
    Rubio, F., Schwarz, M., Gassmann, W., Schroeder, J.I. 1999Genetic selection of mutations in the high affinity K+ transporter HKT1 that define functions of a loop site for reduced Na+ permeability and increased Na+ toleranceJ. Biol. Chem27468396847CrossRefPubMedGoogle Scholar
  54. 54.
    Schleyer, M., Bakker, E.P. 1993Nucleotide sequence and 3′-end deletion studies indicate that the K+-uptake protein Kup from Escherichia coli is composed of a hydrophobic core linked to a large and partially essential hydrophilic C terminusJ. Bacteriol17569256931PubMedGoogle Scholar
  55. 55.
    Schlösser, A., Meldorf, M., Stumpe, S., Bakker, E.P., Epstein, W. 1995TrkH and its homolog, TrkG, determine the specificity and kinetics of cation transport by the Trk system of Escherichia coliJ. Bacteriol17719081910PubMedGoogle Scholar
  56. 56.
    Schwappach, B., Strobrawa, S., Hechenberger, M., Steinmeyer, K., Jentsch, T.J. 1998Golgi localization and functionally important domains in the NH2 and COOH terminus of the yeast CLC putative chloride channel Gef1pJ. Biol. Chem2731511015118CrossRefPubMedGoogle Scholar
  57. 57.
    Sentenac, H., Bonneaud, N., Minet, M., Lacroute, F., Salmon, J.-M., Gaymard, F., Grignon, C. 1992Cloning and expression in yeast of a plant potassium ion transport systemScience256664665Google Scholar
  58. 58.
    Sherman, F.C. 1991Getting started with yeastMeth. Enz194321Google Scholar
  59. 59.
    Sikorski, R.S., Hieter, P. 1989A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiaeGenetics1221927PubMedGoogle Scholar
  60. 60.
    C.L. Slayman 1982 Electrogenic Ion Pumps Current Topics in Membranes and Transport. Vol. 16 Academic Press NewYorkGoogle Scholar
  61. 61.
    Slayman, C.L., Kaminski, P., Stetson, D. 1989

    Structure and function of fungal plasma-membrane ATPases

    Kuhn, P.J eds. Biochemistry of Cell Walls and Membranes of FungiSpringer-VerlagBerlin295312
    Google Scholar
  62. 62.
    Stumpe, S., Schlösser, A., Schleyer, M., Bakker, E.P. 1996

    K+ circulation across the prokaryotic cell membrane: K+-uptake systems

    Konings, W.N.Kaback, H.R.Lolkema, J.S. eds. Transport Processes in Eukaryotic and Prokaryotic OrganismsElsevierAmsterdam473500
    Google Scholar
  63. 63.
    Tholema, N., Bakker, E.P., Suzuki, A., Nakamura, T. 1999Change to alanine of one out of four selectivity filter glycines in KtrB causes a two orders of magnitude decrease in the affinities for both K+ and Na+ of the Na+-dependent K+-uptake system KtrAB from Vibrio alginolyticusFEBS Lett450217220CrossRefPubMedGoogle Scholar
  64. 64.
    Uozumi, N., Kim, E.J., Rubio, F., Yamaguchi, T., Muto, S., Tsuboi, A., Bakker, E.P., Nakamura, T., Schroeder, J.I. 2000The Arabidopsis HKT1 gene homolog mediates inward Na+ currents in Xenopus laevis oocytes and Na+ uptake in Saccharomyces cerevisiaePlant Physiol12212491259CrossRefPubMedGoogle Scholar
  65. 65.
    Vergani, P., Miosga, T., Jarvis, S., Blatt, M.R. 1997Extracellular K+ and Ba2+ mediate voltage-dependent inactivation of the outward-rectifying K+ channel encoded by the yeast gene TOK1FEBS Lett405337344CrossRefPubMedGoogle Scholar
  66. 66.
    Vidal, M., Buckley, A.M., Hilger, F., Gaber, R.F. 1990Direct selection for mutants with increased K+ transport in Sacchaormyces cerevisiaeGenetics125313320PubMedGoogle Scholar
  67. 67.
    Vidal, M., Buckley, A.M., Yohn, C., Hoeppner, D.J., Gaber, R.F. 1995Identification of essential nucleotides in an upstream repressing sequence of Saccharomyces cerevisiae by selection for increased expression of TRK2. ProcNatl. Acad. Sci. USA9223702374Google Scholar
  68. 68.
    Wada, Y., Ohsumi, Y., Anraku, Y. 1992Chloride transport of yeast vacuolar membrane vesicles: a study of in vitro vacuolar acidificationBiochim. Biophys. Acta1101296302PubMedGoogle Scholar
  69. 69.
    Wadiche, J.I., Amara, S.G., Kavanaugh, M.P. 1995Ion fluxes associated with excitatory amino acid transportNeuron15721728CrossRefPubMedGoogle Scholar
  70. 70.
    Walter, A., Hastings, D., Gutknecht, J. 1982Weak acid permeability through lipid bilayer membranesJ. Gen. Physiol79917933CrossRefPubMedGoogle Scholar
  71. 71.
    Weber, W.-M. 1999Ion currents of Xenopus laevis oocytes: state of the artBiochim. Biophys. Acta1421213233PubMedGoogle Scholar
  72. 72.
    Zeng, G.-F., Pypaert, M., Slayman, C.L. 2004Epitope tagging of the yeast K+-carrier, TRK2, demonstrates folding which is consistent with a channel-like structure, JBiol. Chem279 30033013Google Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • T. Kuroda
    • 1
    • 2
  • H. Bihler
    • 3
  • E. Bashi
    • 1
  • C. L. Slayman
    • 1
  • A. Rivetta
    • 1
  1. 1.Department of Cellular and Molecular PhysiologyYale School of MedicineNew HavenUSA
  2. 2.Department of Microbiology, Faculty of Pharmaceutical SciencesOkayama UniversityOkayamaJapan
  3. 3.Botanisches Institute, Lehrstuhl IUniversität KarlsruheKarlsruheGermany

Personalised recommendations