The Journal of Membrane Biology

, Volume 195, Issue 1, pp 53–62 | Cite as

Is the Voltage Gate of Connexins CO2-sensitive? Cx45 Channels and Inhibition of Calmodulin Expression

  • C. Peracchia
  • K. C. Young
  • X. G. Wang
  • L. L. Peracchia


The sensitivity of Cx45 channels to CO2, transjunctional voltage (V j) and inhibition of calmodulin (CaM) expression was tested in oocytes by dual voltage clamp. Cx45 channels are very sensitive to V j and close with V j preferentially by the slow gate, likely to be the same as the chemical gate. With a CO2-induced drop in junctional conductance (G j), both the speed of V j-dependent inactivation of junctional current (I j) and V j sensitivity increased. With 40-mV V j-pulses, the τ of single exponential I j decay reversibly decreased by ˜40% during CO2 application, and Gj steady state/Gj peak decreased multiphasically, indicating that both kinetics and V j sensitivity of chemical/slow V j gating are altered by changes in [H+]i and/or [Ca2+]i. CaM expression was inhibited with oligonucleotides antisense to CaM mRNA. With 15 min CO2, relative junctional conductance (G jt/G jt0) dropped to 0% in controls, but only by ˜17% in CaM-antisense oocytes. Similarly, V j sensitivity was significantly lessened in CaM-antisense oocytes. The data indicate that both the speed and sensitivity of V j-dependent inactivation of the junctional current of Cx45 channels are affected by CO2 application, and that CaM plays a key role in channel gating.


Cell communication Connexins Gap junctions Calmodulin Channel gating CO2 Xenopus oocytes 



This study was supported by the National Institutes of Health, grant GM20113.


  1. 1.
    Ahmad, S., Martin, P.E., Evans, W.H. 2001Assembly of gap junction channels: mechanism, effects of calmodulin antagonists and identification of connexin oligomerization determinants.Eur. J. Biochem.26845444552PubMedGoogle Scholar
  2. 2.
    Barrio, L.C., Capel, J., Jarillo, J.A., Castro, C., Revilla, A. 1997Species-specific voltage-gating properties of connexin-45 junctions expressed in Xenopus oocytes.Biophys. J.73757769PubMedGoogle Scholar
  3. 3.
    Barrio, L.C., Suchyna, T., Bargiello, T., Xu, L.X., Roginski, R.S., Bennett, M.V.L., Nicholson, B.J. 1991Gap junctions formed by connexins 26 and 32 alone and in combination are differently affected by applied voltage.Proc. Natl. Acad. Sci. USA8884108414PubMedGoogle Scholar
  4. 4.
    Bukauskas, F.F., Bukauskiene, A., Verselis, V.K., Bennett, M.V.L. 2002Coupling asymmetry of heterotypic connexin 45/connexin 43-EGFP gap junctions: Properties of fast and slow gating mechanisms.Proc. Natl Acad. Sci. USA9971137118PubMedGoogle Scholar
  5. 5.
    Bukauskas, F.F., Peracchia, C. 1997Two distinct gating mechanisms in gap junction channels: CO2-sensitive and voltage-sensitive.Biophys. J.7221372142PubMedGoogle Scholar
  6. 6.
    Crow, J.M., Atkinson, M.M., Johnson, R.G. 1994Micromolar levels of intracellular calcium reduce gap junctional permeability in lens cultures.Invest. Ophthalmol. Vis. Sci.3533323341PubMedGoogle Scholar
  7. 7.
    Délage, B., Délèze, J. 1998Increase in gap junction conductance of adult mammalian heart myocytes by intracellular calcium ions.Werner, R. eds. Gap Junctions.IOS PressAmsterdam7275Google Scholar
  8. 8.
    Delmar, M., Stergiopoulos, K., Homma, N., Calero, G., Morley, G., Ek-Vitorin, J.F., Taffet, S.M. 2000A molecular model for the chemical regulation of connexin43 channels: the “ball-and-chain” hypothesis.Peracchia, C. eds. Gap Junctions. Molecular Basis of Cell Communication in Health and DiseaseAcademic PressSan Diego, CA223248Google Scholar
  9. 9.
    Diez, J.A., Elvira, M., Villalobo, A. 1998The epidermal growth factor receptor tyrosine kinase phosphorylates connexin32.Molec. Cell. Biochem.187201210PubMedGoogle Scholar
  10. 10.
    Duffy, H.S., Sorgen, P.L., Girvin, M.E., O'Donnell, P., Coombs, W., Taffet, S.M., Delmar, M., Spray, D.C. 2002pH-dependent intramolecular binding and structure involving Cx43 cytoplasmic domains.J. Biol. Chem.2773670636714PubMedGoogle Scholar
  11. 11.
    Elenes, S., Martinez, A.D., Delmar, M., Beyer, E.C., Moreno, A.P. 2001Heterotypic docking of Cx43 and Cx45 connexons blocks fast voltage gating of Cx43.Biophys. J.8114061418PubMedGoogle Scholar
  12. 12.
    Elvira, M., Villalobo, A. 1997Calmodulin prevents the proteolysis of connexin32 by m-calpain.Bioelectrochem. Bioenerg.42207211Google Scholar
  13. 13.
    Enkvist, M.O.K., McCarthy, K.D. 1994Astroglial gap junction communication is increased by treatment with either glutamate or high K+ concentration.J. Neurochem.62489495PubMedGoogle Scholar
  14. 14.
    Giaume, C., Venance, L. 1996Characterization and regulation of gap junction channels in cultured astrocytes.Spray, D.C.Dermietzel, R. eds. Gap Junctions in the Nervous System.R.G. Landes Medical Pub. Co.Austin TX135157Google Scholar
  15. 15.
    Girsch, S.J., Peracchia, C. 1992Calmodulin binding sites in connexins.Biophys. J.61A506Google Scholar
  16. 16.
    Harris, A.L. 2001Emerging issues of connexin channels: Biophysics fills the gap.Quart. Rev. Biophys.34325472Google Scholar
  17. 17.
    Hermans, M.M.P., Kortekaas, P., Jongsma, H.J., Rook, M.B. 1995pH sensitivity of the cardiac gap junction proteins, connexin 45 and 43.Pfluegers Arch.431138140Google Scholar
  18. 18.
    Hertzberg, E.L., Gilula, N.B. 1981Liver gap junctions and lens fiber junctions: comparative analysis and calmodulin interaction.Cold Spring Harbor Symp. Quant. Biol.46639645Google Scholar
  19. 19.
    Lazrak, A., Peracchia, C. 1993Gap junction gating sensitivity to physiological internal calcium regardless of pH in Novikoff hepatoma cells.Biophys. J.6520022012PubMedGoogle Scholar
  20. 20.
    Lazrak, A., Peres, A., Giovannardi, S., Peracchia, C. 1994Ca-mediated and independent effects of arachidonic acid on gap junctions and Ca-independent effects of oleic acid and halothane.Biophys. J.6710521059PubMedGoogle Scholar
  21. 21.
    Loewenstein, W.R. 1966Permeability of membrane junctions.Ann. N.Y. Acad. Sci.137441472PubMedGoogle Scholar
  22. 22.
    Mears, D., Sheppard Jr., N.F., Atwater, I., Rojas, E. 1995Magnitude and modulation of pancreatic β-cell gap junction electrical conductance in situ. J. Membrane Biol.146163176Google Scholar
  23. 23.
    Moreno, A.P., Laing, J.G., Beyer, E.C., Spray, D.C. 1995Properties of gap junction channels formed of connexin 45 endogenously expressed in human hepatoma (SKHep1) cells.Am. J. Physiol.268C356C365PubMedGoogle Scholar
  24. 24.
    Peracchia, C. 1984Communicating junctions and calmodulin: inhibition of electrical uncoupling in Xenopus embryo by calmidazolium.J. Membrane Biol.814958Google Scholar
  25. 25.
    Peracchia, C. 1987Calmodulin-like proteins and communicating junctions. Electrical uncoupling of crayfish septate axons is inhibited by the calmodulin inhibitor W7 and is not affected by cyclic nucleotides.Pfluegers Arch.408379385Google Scholar
  26. 26.
    Peracchia, C. 1988The Calmodulin hypothesis for gap junction regulation six years later.Hertzberg, E.L.Johnson, R.G. eds. Gap Junctions.Modern Cell Biology Series. Vol. VII. Alan R. Liss, Inc.New York267282Google Scholar
  27. 27.
    Peracchia, C. 1990aIncrease in gap junction resistance with acidification in crayfish septate axons is closely related to changes in intracellular calcium but not hydrogen ion concentration.J. Membrane Biol.1137592Google Scholar
  28. 28.
    Peracchia, C. 1990bEffects of caffeine and ryanodine on low pHi-induced changes in gap junction conductance and calcium concentration in crayfish septate axons.J. Membrane Biol.1177989Google Scholar
  29. 29.
    Peracchia, C., Bernardini, G., Peracchia, L.L. 1981A calmodulin inhibitor prevents gap junction crystallization and electrical uncoupling.J. Cell Biol.9124aGoogle Scholar
  30. 30.
    Peracchia, C., Bernardini, G., Peracchia, L.L. 1983Is calmodulin involved in the regulation of gap junction permeability?Pfluegers Arch.399152154Google Scholar
  31. 31.
    Peracchia, C., Lazrak, A., Peracchia, L.L. 1994Molecular models of channel interaction and gating in gap junctions.Peracchia, C. eds. Handbook of Membrane Channels-Molecular and Cellular Physiology.Academic PressSan Diego361377Google Scholar
  32. 32.
    Peracchia, C., Shen, L. 1993. Gap junction channel reconstitution in artificial bilayers and evidence for calmodulin binding sites in MIP26 and connexins from heart, liver and Xenopus embryo. In: Gap Junctions, J.E. Hall, G.A. Zampighi, and R.M. Davis, editors. Elsevier, Amsterdam, The Netherlands. Prog. Cell Res. 3:163–170Google Scholar
  33. 33.
    Peracchia, C., Sotkis, A., Wang, X.G., Peracchia, L.L., Persechini, A. 2000aCalmodulin directly gates gap junction channels.J. Biol. Chem.2752622026224Google Scholar
  34. 34.
    Peracchia, C., Wang, X.G. 1997Connexin domains relevant to the chemical gating of gap junction channels.Braz. J. Med. Biol. Res.30577590PubMedGoogle Scholar
  35. 35.
    Peracchia, C., Wang, X., Li, L., Peracchia, L.L. 1996Inhibition of calmodulin expression prevents low-pH-induced gap junction uncoupling in Xenopus oocytes.Pfluegers Arch.431379387Google Scholar
  36. 36.
    Peracchia, C., Wang, X.G., Peracchia, L.L. 1999Is the chemical gate of connexins voltage sensitive? Behavior of Cx32 wild-type and mutant channels.Am. J. Physiol.276C1361C1373PubMedGoogle Scholar
  37. 37.
    Peracchia, C., Wang, X.G., Peracchia, L.L. 2000bBehavior of chemical- and slow voltage-sensitive gating of connexin channels: the “Cork” gating hypothesis.Peracchia, C. eds. Gap Junctions- Molecular Basis of Cell Communication in Health and DiseaseAcademic PressSan Diego, CA271295Google Scholar
  38. 38.
    Peracchia, C., Wang, X.G., Peracchia, L.L. 2000cSlow gating of gap junction channels and calmodulin.J. Membrane Biol.785570Google Scholar
  39. 39.
    Pereda, A.E., Bell, T.D., Chang, B.H., Czernik, A.J., Nairn, A.C., Soderling, T.R., Faber, D.S. 1998Ca2+/calmodulin-dependent kinase II mediates simultaneous enhancement of gap-junctional conductance and glutamatergic transmission.Proc. Natl. Acad. Sci. USA951327213277PubMedGoogle Scholar
  40. 40.
    Persechini, A., Gansz, K.J., Paresi, R.J. 1996Activation of myosin light chain kinase and nitric oxide synthase activities by engineered calmodulins with duplicated or exchanged EF hand pairs.Biochemistry35224228PubMedGoogle Scholar
  41. 41.
    Pina-Benabou, M.H., Srinivas, M., Spray, D.C., Scemes, E. 2001Calmodulin kinase pathway mediates the K+-induced increase in gap junctional communication between mouse spinal cord astrocytes.J. Neurosci.2166356643PubMedGoogle Scholar
  42. 42.
    Purnick, P.E.M., Oh, S.H., Abrams, C.K., Verselis, V.K., Bargiello, T.A. 2000Reversal of the gating polarity of gap junctions by negative charge substitutions in the N-terminus of connexin 32.Biophys. J.7924032415PubMedGoogle Scholar
  43. 43.
    Rose, B., Loewenstein, W.R. 1975Permeability of cell junction depends on local cytoplasmic calcium activity.Nature254250252PubMedGoogle Scholar
  44. 44.
    Saimi, Y., Kung, C. 2002Calmodulin as an ion channel subunit.Ann. Rev. Physiol.64289311Google Scholar
  45. 45.
    Spray, D.C., Harris, A.L., Bennett, M.V.L. 1981aEquilibrium properties of a voltage-dependent junctional conductance.J. Gen. Physiol.777793Google Scholar
  46. 46.
    Spray, D.C., Harris, A.L., Bennett, M.V. 1981bGap junctional conductance is a simple and sensitive function of intracellular pH.Science211712715Google Scholar
  47. 47.
    Steiner, E., Ebihara, L. 1996Functional characterization of canine connexin45.J. Membrane Biol.150153161CrossRefGoogle Scholar
  48. 48.
    Stergiopoulos, K., Alvarado, J.L., Mastroianni, M., Ek-Vitorin, J.F., Taffet, S.M., Delmar, M. 1999Hetero-domain interactions as a mechanism for the regulation of connexin channels.Circ. Res.8411441155PubMedGoogle Scholar
  49. 49.
    Suchyna, T.M., Xu, L.X., Gao, F., Fourtner, C.R., Nicholson, B.J. 1993Identification of a proline residue as a transduction element involved in voltage gating of gap junctions.Nature365847849PubMedGoogle Scholar
  50. 50.
    Török, K., Stauffer, K., Evans, W.H. 1997Connexin 32 of gap junctions contains two cytoplasmic calmodulin-binding domains.Biochem. J.326479483PubMedGoogle Scholar
  51. 51.
    Turin, L., Warner, A.E. 1977Carbon dioxide reversibly abolishes ionic communication between cells of early amphibian embryo.Nature2705657Google Scholar
  52. 52.
    Valiunas, V. 2002Biophysical properties of connexin-45 gap junction hemichannels studied in vertebrate cells.J. Gen. Physiol.119147164PubMedGoogle Scholar
  53. 53.
    Van Eldik, L.J., Hertzberg, E.L., Berdan, R.C., Gilula, N.B. 1985Interaction of calmodulin and other calcium-modulated proteins with mammalian and arthropod junctional membrane proteins.Biochem. Biophys. Res. Commun.126825832PubMedGoogle Scholar
  54. 54.
    Veenstra, R.D., Wang, H.-Z., Westphale, E.M., Beyer, E.C. 1992Multiple connexins confer distinct regulatory and conductance properties of gap junctions in developing heart.Circ. Res.7112771283PubMedGoogle Scholar
  55. 55.
    Wang, X.G., Peracchia, C. 1997Positive charges of the initial C-terminus domain of Cx32 inhibit gap junction gating sensitivity to CO2.Biophys. J.73798806PubMedGoogle Scholar
  56. 56.
    Werner, R., Levine, E., Rabadan-Diehl, C., Dahl, G. 1991Gating properties of connexin32 cell-cell channels and their mutant expressed in Xenopus oocytes.Proc. R. Soc. Lond.243511Google Scholar
  57. 57.
    Young, K.C., Peracchia, C. 2002Carbon dioxide sensitive voltage gating of connexin32 and connexin 32/45 chimeric channels.Mol. Biol. Cell13351aGoogle Scholar
  58. 58.
    Zimmer, D.B., Green, C.R., Evans, W.E., Gilula, N.B. 1987Topological analysis of the major protein in isolated intact rat liver gap junctions and gap junction-derived single membrane structures.J. Biol. Chem.26277517763PubMedGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 2003

Authors and Affiliations

  • C. Peracchia
    • 1
  • K. C. Young
    • 1
  • X. G. Wang
    • 1
  • L. L. Peracchia
    • 1
  1. 1.Department of Pharmacology and PhysiologyUniversity of Rochester, School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14642-8711USA

Personalised recommendations